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Abstract

This paper reviews and compares di�erent estimators used in the past to estimate a binary
response model (BRM) with a binary endogenous explanatory variable (EEV) to give prac-
tical insights to applied econometricians. It also gives a guidance how the average structural
function (ASF) can be used in such a setting to estimate average partial e�ects (APEs).
In total, the (relative) performance of six di�erent linear parametric, non-linear parametric
as well as non-linear semi-parametric estimators is compared in speci�c scenarios like the
prevalence of weak instruments. A simulation study shows that the non-linear parametric
estimator dominates in a majority of scenarios even when the corresponding parametric as-
sumptions are not ful�lled. Moreover, while the semi-parametric non-linear estimator might
be seen as a suitable alternative for estimating coe�cients, it su�ers from weaknesses in
estimating partial e�ects. These insights are con�rmed by an empirical illustration of the
individual decision to supply labor.
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1 Introduction

In di�erent �elds of economics the estimation of binary response models (BRMs) where the e�ect

of interest comes from a variable which is dichotomous itself and additionally endogenous is often

needed. Examples are from the �elds of education (Evans & Schwab, 1995; Angrist, Bettinger,

Bloom, King, & Kremer, 2002; Altonji, Elder, & Taber, 2005), health (Angrist & Evans, 1998),

labor (Sasaki, 2002) or migration (Dong & Lewbel, 2015) and endogeneity may be not exclusively

due to one speci�c reason although the case of a bias due to an omitted variable might be the most

prominent.1 The setting of a model with a binary endogenous explanatory variable (EEV) is

closely related to the so-called treatment literature where the treatment indicator is represented

by a binary variable, which is equal to unity for the part of the population which receives a

treatment and for the rest it equals to zero. Although experimental economics has grown in

importance in recent years, most of applied economist are still working with observational data

where treatment decisions are often not determined by fully random draws and are therefore

prone to endogeneity. Presumably, the most prominent study in this respect is the one of Angrist

(1990) on individual earning outcomes where the treatment of serving in the US military during

Vietnam war cannot be considered as random.

In general, taking care of endogeneity in non-linear models like BRMs is more challenging than

in linear models. For instance, mimicking two-stage-least-squares (2SLS) in non-linear models

by substituting endogenous variables with their �tted values leads to the so-called forbidden

regression and inconsistent estimates (Hausman, 1975). The complexity for non-linear models

is in particular pronounced when the EEV is binary itself (Wooldridge, 2010). Even in the

case when there is no endogeneity present, many applied researchers rather tend to use a linear

probability model (LPM) instead of a probit or logit model in the setting of a BRM due to its

simplicity and by arguing that it delivers adequate estimates (Wooldridge, 2010). However, it is

obvious that making use of the the information that the dependent variable is limited should be

not harmful or disadvantageous and should theoretically outperform linear models due to their

drawbacks.2 One of those drawbacks as outlined by Imbens and Angrist (1994) is that a LPM

could deliver estimates of an average treatment e�ect for a population which is not observed.

Typically, using non-linear instead of linear models comes with the cost of making stronger

assumptions (Imbens & Angrist, 1994) and this behavior can be ampli�ed in an EEV setting due

to the fact that it is necessary to deal with the endogeneity in order to get unbiased estimates.

This paper reviews and compares di�erent estimators which have been used in previous studies

in order to estimate the e�ect of a dichotomous EEV in a BRM. To be more precise, this study

considers six estimators which di�er in terms of their assumption on the non-linearity of the

model and the parametric speci�cation which jointly results in the complexity of the model to

estimate. From the class of linear parametric models, the most popular, i.e. the most frequent

1Other reasons for endogeneity are measurement error, simultaneity, functional form misspeci�cation or sample
selection.

2Horrace and Oaxaca (2006) present conditions when the approximation of a non-linear model through a LPM
yields consistent estimates for the average partial e�ects (APEs). However, the authors admit that this would
require fortuitous circumstances.
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used, 2SLS approach as well as a less known alternative to this one suggested by Angrist and

Pischke (2009) using generated instruments is considered. In terms of non-linear parametric

models the focus is on the performance of the maximum likelihood (ML) estimator of a recursive

bivariate probit model (Heckman, 1978; Amemiya, 1978). With respect to the class of (non-

linear) semi-parametric models, the performance of two di�erent types of the estimator of the

special regressor approach according to Lewbel (2000) is investigated. In order to be able to

compare the performance of those estimators which are taking into account the endogeneity of

the binary variable of interest with the one of an estimator who is ignoring it, the performance of

a regular probit estimator is also presented. Given the fact that we concentrate on the impact of

a binary instead of a continuous EEV in a BRM, we are unable to consider the prominent control

function approach also known as two-stage-residual-inclusion (2SRI) approach as suggested by

Rivers and Vuong (1988) and further developed by Blundell and Powell (2004).3

Our contribution to the existing literature is straightforward. According to the best of our

knowledge, there exists no exhaustive analysis comparing the estimators mentioned above in

the setting of a BRM with a binary EEV although all of those estimators have been frequently

used in the past. Our goal is to critically discuss and answer the question which estimator

should be used in this setting given speci�c scenarios within this setting. By making use of

Monte Carlo simulations, we explicitly test the performance of the estimators given di�erent

scenarios. First, we analyze the performance given di�erent second moments of one speci�c

exogenous explanatory variable which is crucial for the special regressor approach. Second, we

test the impact of weak instruments on the estimators as suggested by Lewbel, Dong, and Yang

(2012). Third and �nally, we investigate how di�erent assumptions on a speci�c dependence

structure re�ecting the endogeneity in our proposed model can a�ect the predicting power of the

estimators. Our reference for the evaluation of the performance of the estimators is always the

true APE, i.e. the one which we set by our simulation setup. Since the calculation of partial

e�ects given endogeneity is not as simple as in the case of its absence, we draw on insights of

the average structural function (ASF) according to Blundell and Powell (2004) to get unbiased

estimates of the partial e�ects. To the best of our knowledge, we are the �rst estimating APEs

for the special regressor approach via the the ASF in a (simulated) setting of a BRM with a

binary EEV.

Our �ndings are that the ML estimator is the best performing estimator in terms of a low

root mean squared error (RMSE) in general but even in scenarios where the assumptions raised

by the recursive bivariate probit approach are not ful�lled. Estimators of linear models turn out

to outperform both special regressor approaches in terms of a smaller spread of their estimates

3This approach which delivers identical estimates as the 2SLS approach in a linear model is only valid in a
setting with continuous EEVs. To be more precise, in the setting of a binary EEV the error term of the equation
projecting the endogenous variable on the exogenous variables - implied by the control function approach - su�ers
by de�nition from heteroskedasticity and therefore can not be independent of the exogenous variables. However,
this is a necessary condition as pointed out by Blundell and Powell (2004). This limitation has been overlooked in
a couple of studies in the past. For instance Terza, Basu, and Rathouz (2008) advocating for the 2SRI approach
in di�erent classes of non-linear models. However, Wan, Small, and Mitra (2018) show that the conclusions made
by Terza et al. (2008), i.e. that the 2SRI approach delivers consistent estimates for a variety of non-linear models,
is only true under some unrealistic assumptions.
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in most of the tested scenarios. One of the two special regressor approaches always dominates

the other by delivering more accurate point estimates for the APEs.

The rest of the paper is organized as follows: Section 2 presents a short review of other

studies investigating the performance of di�erent estimators in similar settings to the one we

investigate. Section 3 introduces the model. Section 4 discusses the di�erent estimators under

investigation and explains how we estimate the APEs. In Section 5 we present the results of

our Monte Carlo simulations. An application to demonstrate the dominance of the recursive

bivariate probit approach is given in Section 6 by the reestimation of results of the study of

Angrist and Evans (1998). Finally, Section 7 brie�y discusses our �ndings and concludes.

2 Literature

The number of studies comparing the performance of di�erent estimators in settings of non-linear

models with EEVs is rather small. For the speci�c setting of a BRM with only one binary EEV

we are not aware of an exhaustive one. The studies which are brie�y outlined in the following

are similar to our study in particular in terms of the estimators under investigation.

Kang and Lee (2014) analyze the performance of six di�erent estimators in a setting which

is similar to ours, i.e. a BRM with a binary EEV, but also in another one where the EEV is

continuous. They use a "real-data-based" simulation to investigate the performance of di�erent

parametric and semi-parametric approaches.4 For the case where the EEV is binary they compare

estimators of a 2SLS, a control function, an arti�cial instrumental regressor, a special regressor

and recursive bivariate probit approach. For the special regressor approach they limit their

analysis to the one of both types which uses a sorted data density and which we will identify to

be dominated by the other. Moreover, it remains open if one of the crucial assumptions of this

approach namely the conditional independence of the chosen special regressor is ful�lled in their

setting. In addition to these debatable points, their comparison of the estimators is to some

extent based on a measure of an APE which does not account for the prevalent endogeneity.

In total, the authors recommend to use the 2SLS and the control function approach - even in

scenarios where they are theoretically invalid - due to their analytic and computational simplicity.

Lin and Wooldridge (2015a) present an estimator for a setting of a BRM with one binary

EEV and an unlimited number of continuous EEVs. Actually, their proposed estimator is a

combination of the control function approach and the recursive bivariate probit approach: The

errors of linear projections of all continuous EEVs on the set of exogenous variables are plugged

into the structural equation of the recursive bivariate probit model before the ML estimator is

applied. By running Monte Carlo simulations with reducing complexity to one binary and one

continuous EEV each, the authors show that both types of their proposed estimator, i.e. the

4By the expression "real-data-based" simulation, the authors mean that the regressors they use in their model
are drawn form real data instead of being arti�cially generated. However, they set the parameters of their equation
system and the distribution of the errors manually.
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one with sequentially averaged APEs as well as the one with jointly averaged APEs, outperform

all other estimators namely the 2SLS, the original control function and both types of the special

regressor approach.5 However, it should be noted that maybe due to the fact that the special

regressor approach is not in focus of this study there exists an inconsistency in this discussion

paper complemented by a minor misconception regarding the construction of the special regres-

sor.6 Maybe due to this and other reasons the focus of this study has considerably changed in

an updated version (Lin & Wooldridge, 2018) where the special regressor approach is no longer

part of the investigation.7

By following the DGP setup described in Lewbel (2000), Bontemps and Nauges (2017) present

a simulation study which focuses on a model of a two equation system where the structural

equation is a BRM but where the EEV is continuous. Due to this characteristic - which is

di�erent to our analyzed setting - the reduced form equation is assumed to have a linear form.

In their study, the authors compare the performance of an estimator of the special regressor

approach in contrast to a ML estimator of a control function approach.8 Their main �ndings

are that the large support condition of the special regressor approach is a necessary one to get

unbiased estimates and that the behavior of trimming data during the estimation process as

suggested by Lewbel et al. (2012) can lead to a severe bias in the estimates. In contrast to

the studies mentioned above, the authors evaluate the two di�erent approaches based on the

estimation of the coe�cients of the structural equation instead of partial e�ects or alternatively

coe�cient ratios. However, it is obvious that besides other minor weaknesses such as mixing up

the parameters of a uniform distribution or a misleading conclusion with respect to the trimming

of data, this behavior is irritating since those coe�cients are only identi�ed up to scale.9

3 Model

In order to compare the di�erent estimators with respect to their performance in a BRM with a

binary EEV, we set up the following two equation model:

y1 = 1[y∗1 > 0] = 1[xψ + u1 > 0] = 1[γy2 + z1β + αv + u1 > 0] (1)

y2 = 1[y∗2 > 0] = 1[zδ + ζv + u2 > 0] (2)

5The APEs of a joint ML estimation always serve as benchmark.
6To be more precise, although Lin and Wooldridge (2015a, p. 14) emphasize to use a continuous independent

variable as the special regressor in the structural equation, its distribution is a Bernoulli one in the stated
data generating process (DGP). Moreover, the statement of the authors that the special regressor method puts
unrealistic assumptions on the reduced form equation turns out to be too strong.

7In the newer version of this study the model is ampli�ed to allow for additional unobserved heterogeneity
through a switching regime. Moreover, the application of the proposed model to fractional instead of binary
response models is discussed and tests to assess the degree of endogeneity of the binary and the continuous EEVs
are developed.

8The authors employ Stata's ivprobit command which is a control function estimator despite its name sup-
posing an instrumental variable (IV) estimator.

9See Wooldridge (2005) for a detailed discussion why focusing on parameters in non-linear models can be
misguiding.
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Equation 1 is the structural equation which describes the relationship of interest. Equation

2 is the reduced form equation for the binary EEV y2. The indicator function 1[·] takes the
value one when the statement in brackets is true and zero otherwise. The expressions y∗1 and y∗2
represent the unobserved dependent variables in terms of an underlying latent variable model,

which are assumed to be linear functions of the explanatory variables. The vector x ∈ Rdx=2+dz1

- where d· denotes the dimension of the respective vector - contains all explanatory variables

of the structural equation, i.e. the endogenous as well as the exogenous ones. The vector

z = (z1, z2) ∈ Rdz=dz1+dz2 is a vector of all exogenous variables in the model with the exemption

of a special regressor denoted as v ∈ R with a normalized coe�cient α equal to one.10 In terms

of the exclusion restriction z1 has to be a strict subset of z, i.e. dz1 < dz. In all cases, the �rst

element of the vector z1 is unity which given that the following minimal conditions E(z1 u1) = 0

and E(zu2) = 0 hold leads to the result of E(u1) = E(u2) = 0.11

This system of equations applies to the most prominent reason of endogeneity namely the case

of an omitted variable. Other reasons for endogeneity such as simultaneity or measurement error

are not captured by this system. In case of the �rst, y2 would have to be a function of y1, i.e. y1

would have to be part of the right hand side (RHS) of the reduced form equation, i.e. Equation

2. In case of endogeneity due to measurement error, y2 could be expressed as y2 = y◦2 + εy2

where y◦2 represents the true value of y2 and εy2 the corresponding measurement error. Hence,

we would have to have an additional error in the structural equation, i.e. −γ εy2 .

Formally, endogeneity in the model described by both equations is prevalent when E(y2 u1) 6= 0

which means that y2 and u1 are correlated. This relationship can be equivalently expressed by

a linear projection of one of the errors of the structural equation and the reduced form equation

on the other:

u1 = χu2 + ν1 (3)

where χ ≡ E(u′2 u2)−1 E(u′2 u1) has to be di�erent from zero with E(u2 ν1) = 0 by de�nition of a

linear prediction.

In our analysis we do not set up the dependence structure between both errors u1 and u2

by means of a linear projection as described in Equation 3, which is besides directly param-

eterizing the correlation between both errors the most popular way of doing this (cf. Kang

and Lee (2014) Lin and Wooldridge (2015a), Lin and Wooldridge (2018)). Instead we use a

copula function approach. A copula function approach uses the marginal cumulative distribu-

tion functions (CDFs) of a set of variables and a speci�c copula function to construct a joined

CDF for those variables (Cameron & Trivedi, 2005). Let Cθ(ü1, ü2) be a copula function with

parameter θ governing the strength of dependence and ü1 and ü2 being equal to the marginal

CDFs of u1 and u2 respectively, i.e. ü1 = Fu1 and ü2 = Fu2 where F· stands for the marginal

10In Subsection 4.1.4 we will explain why we separate v from the other exogenous variables contained in z. The
normalization of the coe�cient α is harmless and equivalent to normalizing the variance of the error term to be
equal to one like in a probit model.

11Formally, those two minimal conditions E(z1 u1) = 0 and E(zu2) = 0 have to hold because otherwise it is not
ruled out that elements of the vector z are endogenous as well.
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CDF. Then, Cθ(ü1, ü2) = P{Ü1 ≤ ü1, Ü2 ≤ ü2} = Cθ(Fu1 , Fu2) = FU1,U2(u1, u2) is the most

general expression of a copula function for the bivariate case which is equal to the joint CDF of

both components ü1, ü2 where Ü1, Ü2 are realizations of those components (Nelsen, 2006). The

advantage of using a copula in order to describe the exact dependence structure between both

errors of the single equations of our model is that it allows to be more �exible in comparison to

just de�ning the Spearman correlation coe�cient or the parameter α in Equation 3. The copula

function does not pose any distribution restrictions on the marginal CDFs. Therefore, the gen-

eration of a �exible multivariate distribution is simple by just choosing both marginal CDFs and

the copula function which binds them together (Cameron & Trivedi, 2005). In Section 5 we will

use copulas of di�erent classes namely the Elliptical and Archimedian class for our simulations.

However, our baseline for all simulations will be that the marginal CDFs of both errors u1 and

u2 follow a normal distribution and that the copula used is a Gaussian one which is part of

the Elliptical class. In other words, we set FU1,U2(u1, u2) = Φ2(u1, u2, θ) where Φ2 represents a

bivariate normal distribution. Obviously, we rule out the product / independence copula in all

the following since in this case our model would not su�er from any endogeneity problems.

4 Estimation

4.1 Estimators

In this subsection we describe the di�erent estimators used which comprise speci�c parametric as

well as semi-parametric approaches. We refrain from applying non-parametric approaches which

have been suggested by Vytlacil and Yildiz (2007) or Chesher and Rosen (2013) and also other

semi-parametric approaches like the ones of Yildiz (2013), Mu and Zhang (2018) or most recently

Han and Lee (2019) which are relatively more complex. Indeed, we focus on those approaches

which have been frequently used in the previous literature in order to estimate a causal e�ect in

the setting of a BRM with a binary EEV.12 Hence, we also consider two common estimators for

linear models in our analysis.

4.1.1 2SLS

Originally proposed by Wright (1928) to estimate the elasticities of supply and demand for

butter and linseed oil, the 2SLS approach is the most frequently used approach in the class of

linear instrumental variable regressions. It identi�es the part of the variation of the endogenous

variable in the structural equation which is not prone to endogeneity by the means of an ordinary-

least-squares (OLS) regression of the reduced form equation and plugs the �tted values of the

12In fact, we checked the number of citations of those above mentioned publications and found that although
they have been published in journals such as American Economic Review or Econometric Theory the number of
citations is considerably low for Yildiz (2013) and Chesher and Rosen (2013). It amounts to not more than �ve
and �fteen citations respectively according to Google Scholar when correcting for double counts. Vytlacil and
Yildiz (2007) is published in Econometrica and cited much more often. Mu and Zhang (2018) is published in the
Econometrics Journal and has not be cited until now.

6



reduced form equation as substitutes for the endogenous variable into the structural equation

(Wooldridge, 2010). Given that the relevance and exclusion conditions hold and the instrument

variable does not su�er from endogeneity itself, the 2SLS approach allows for consistent estimates

by regressing the adjusted structural equation with OLS whereby the estimates of the standard

errors have to account for the estimation error in the reduced form equation itself. Whereas

this method is an adequate approach for continuous dependent variables it has some drawbacks

in the case of explaining a limited dependent variable like a binary response. Indeed, the 2SLS

method shares the same drawbacks a LPM has in the case of explaining a binary choice outcome

in the absence of any endogeneity. First, it can yield to predicted probabilities smaller than

zero or larger than one respectively. Second, the error term su�ers from heteroskedasticity by

de�nition. Third and �nally, this method assumes constant marginal e�ects (Wooldridge, 2010).

In contrast, the advantages of the 2SLS approach are that it is simplistic - in particular when using

professional statistical software which allows to directly estimate the standard errors properly

- and that it sets no assumptions on the distribution of the error terms of both the structural

equation and the reduced form equation. Despite the obvious de�ciencies, the 2SLS method has

often been used in non-linear models settings like in Angrist and Evans (1998), Evans, Farrelly,

and Montgomery (1999), Angrist et al. (2002), Angrist, Lavy, and Schlosser (2010), Conley and

Heerwig (2011), Islam and Raschky (2015) or Farbmacher, Guber, and Vikström (2018).

4.1.2 Alternative 2SLS

Angrist and Pischke (2009) propose an alternative to the classic 2SLS estimator in the context

of the discussion of the so-called forbidden regression, i.e. the view that mimicking 2SLS in non-

linear models by substituting endogenous variables with their �tted values yields to inconsistent

estimates. Their idea is to combine a linear model approach with the information that the EEV

itself is binary. Therefore, they propose a three-step estimation approach where in the �rst step

the BRM described by the reduced form equation is estimated by a non-linear model, for instance

a probit model. In the second step predictions of this regression are calculated. In a third step

those �tted values are used as substitutes for the original instruments in a classic 2SLS approach.

According to Angrist and Pischke (2009), this estimator could be more e�cient in comparison

to the classical 2SLS estimator if the assumed non-linear model in the �rst step delivers a

better approximation of the reduced form equation's conditional expectation function (CEF) as

a linear model would do. Although, this estimator might be more e�cient than the classical

2SLS one it shares the same drawbacks (Newey, 1990). Wooldridge (2010) implicitly mentions

this three-step estimation procedure in the context of Two-Stage Least Squares with Generated

Instruments. Therefore, we call this estimator in the following the Alternative 2SLS or the

Generated Instrument 2SLS.
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4.1.3 Recursive Bivariate Probit

The recursive bivariate probit approach relies on the work of Heckman (1978) and Amemiya

(1978). In contrast to both types of the 2SLS estimator, it explicitly addresses the non-linearity

present in the Equations 1 and 2. For that reason, it raises assumptions on the marginal and

joint distribution of the errors of the structural and the reduced form equation. In fact, this

approach assumes that (u1, u2) follows a bivariate normal distribution Φ2 which implies that

it is assumed that both the structural and the reduced form equation are probit models each.

Moreover, since it is a fully parametrized approach it requires that the exact index functions -

in our case y∗1 and y∗2 - are known to the researcher (Wooldridge, 2010). Given this information

a ML estimator is applied to estimate the simultaneous equation model and all parameters are

jointly identi�ed.

The likelihood of the four di�erent choice probabilities of the four di�erent states of (y1, y2)

for the joint identi�cation of the parameters of this model can be written as

L(κ) =
∏

P (y1 = 1, y2 = 1|κ)y1y2 · P (y1 = 0, y2 = 1|κ)(1−y1)y2 · P (y1 = 1, y2 = 0|κ)y1(1−y2) ·

P (y1 = 0, y2 = 0|κ)(1−y1)(1−y2)

where κ represents a vector of all parameters to be estimated.

As outlined in Greene (2017), the four choice probabilities in the recursive bivariate probit

approach are equal to

P (y1 = 1, y2 = 1) = Φ2(γ + z1β + αv, zδ + ζv, ρ)

P (y1 = 0, y2 = 1) = Φ2(−(γ + z1β + αv), zδ + ζv,−ρ)

P (y1 = 1, y2 = 0) = Φ2(z1β + αv,−(zδ + ζv),−ρ)

P (y1 = 0, y2 = 0) = Φ2(−(z1β + αv),−(zδ + ζv), ρ)

where one advantage of the recursive bivariate probit approach immediately appears: The en-

dogenous nature of y2 has no impact on the formulation of the likelihood.13 As a result the

log-likelihood simpli�es to

lnL =
∑

lnΦ2[qy1(γy2 + z1β + αv) , qy2(zδ + ζv) , qy1 · qy2 · ρ]

where qy1 = (2y1 − 1) and qy2 = (2y2 − 1).

It is well known that in the case when the densities of the ML function are correctly speci�ed

- which implies that the index functions and the distribution of the error terms are correctly

speci�ed - , the ML estimator is the most asymptotically e�cient estimator (Wooldridge, 2010).

However, this requirement of a complete and correct speci�cation is a severe burden because

13To be more precise, as discussed in Greene (2017) and Wooldridge (2010), the likelihood function of a regular
bivariate probit model where two probit models have correlated disturbances but where in contrast to the recursive
bivariate probit model y1 is not a function of y2 is the same as the one shown above.
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misspeci�cation typically leads to inconsistent estimates in the absence of quasi-maximum like-

lihood (QML) (Wooldridge, 2010). Moreover, given its iterative search the recursive bivariate

probit approach is prone to computational convergence problems when estimating nuisance pa-

rameters, for instance due to local (multiple) maxima of the likelihood function.

4.1.4 Special Regressor

Lewbel (2000) proposed another approach which can be used to estimate the causal e�ect of

a binary EEV in a BRM. In contrast to the approaches just described it is a semi-parametric

approach, i.e. it is not as much requiring on distributional assumptions as the other approaches.

Moreover, this estimator is not based on an iterative search such as a ML-estimator and it is

also not limited to the speci�c setting of a BRM but can and has been used in a universe of

EEV settings such as ordered or multinomial choice models, censored regression models, selection

and dynamic choice models in the past.14 While this approach relaxes assumptions such that

a speci�cation of the reduced form equation of the endogenous variable is needed, it requires

certain properties of one exogenous regressor in the structural equation which will be represented

by v in the following.15 Moreover, it prevents to have polynomials of the special regressor v as

additional regressors due to a key conditional distribution assumption. On the other hand, it can

be extremely helpful for the case of multiple endogenous regressors since only one valid special

regressor is needed for all of them.

According to Dong and Lewbel (2015), the special regressor v has to ful�ll three requirements:

First, it has to appear additively to u1 in the structural equation. Second, the special regressor v

is required to be continuously distributed with a su�cient large support and third it is required

to be conditionally independent of the error term of the structural equation, i.e. u1 ⊥ v|z, y2.

The �rst requirement is always ful�lled in BRMs as it can be seen by the latent variable form

expression of Equation 1. With respect to the second requirement, the special regressor requires

that the condition supp(γy2 + z1β + u1) ⊆ supp(−v) holds. However, as it as been shown by

Magnac and Maurin (2007) the part of this requirement referring to the continuous distribution

can be relaxed to a distribution with tail symmetry. The third requirement can be simpli�ed by

means of a linear projection of v on (y2, z) in order to be able to assess only the unconditional

independence.

Given a special regressor ful�lling those requirements as well as the standard assumptions

of a 2SLS estimation hold, i.e. E(zu1) = 0 and rank(E(zz′1)) = dz, the virtue of the semi-

parametric special regressor approach is that the conditional expectation E(y1|y2, z, v) will equal

the conditional distribution of γy2 + z1β+ u1 conditioning on (y2, z) and evaluated at v.16 This

equality can then be used to get consistent estimates of the coe�cients of the structural equation,

i.e. Equation 1, by the following multi-step estimation procedure proposed by Dong and Lewbel

14For a full list, see Dong and Lewbel (2015).
15Due to this circumstance, this methods got its name the special regressor approach.
16See Dong and Lewbel (2015) for a simple example with just one parameter to estimate.
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(2015) based on earlier work of Lewbel et al. (2012), Lewbel (2007) and Lewbel (2000):

Step 1 Demean the special regressor v and estimate a linear projection of v on z and y2. For each

observation i calculate the residuals ŵ of this regression, i.e. ŵi = vi − ziτ̂ − ξ̂ y2i

Step 2 Estimate the density of w (fi) at each observation i = 1 . . . n by one of the two possibilities:

2.1 Kernel Density (KeDe) Estimator : Apply a standard one-dimensional kernel estima-

tor

f̂i =
1

nh

n∑
j=1

K(
ŵi − ŵj

h
) (4)

to each observation where h is the bandwidth and K is a symmetric kernel density

function.

2.2 Sorted Data (SoDa) Estimator according to Lewbel (2007): Sort the observations in

terms of ŵ from lowest to highest. Treat ŵ+ as the next largest value of ŵ (after

removing any ties) and similarly ŵ− the next smallest value. De�ne the density as

f̂i =
2/n

ŵ+ − ŵ−
(5)

Step 3 For each observation i construct t̂i where

t̂i =
y1i − 1[vi ≥ 0]

f̂i

Step 4 Regress t̂i on (y2, z1) by classical 2SLS where y2 is instrumented by z2. According to

Theorem 1 in the Appendix this regression yields consistent estimates of (γ,β).17

Standard errors of this multi-step estimation procedure for γ̂, β̂ can be obtained by bootstrap

mechanisms.

4.2 Partial E�ects

In the case of comparing estimators of di�erent non-linear models one has to know that com-

paring their coe�cients is inappropriate since those parameters are only identi�ed up to scale

(Greene, 2017). In order to compare di�erent estimators regarding their performance one can

either compare coe�cient ratios by randomly choosing one coe�cient as the base category or by

estimating partial e�ects (Wooldridge, 2005). Since we are interested in the direct e�ect of y2 on

y1 in our BRM, we use partial e�ects resting on the respective estimated coe�cients to evaluate

the performance of the di�erent estimators described in the previous subsection.

17Dong and Lewbel (2015) as well as Lewbel et al. (2012) point out that it might be necessary to discard
outliers in this �nal step. However, based on our results we agree with Bontemps and Nauges (2017) that
discarding outliers by trimming data in this step is disadvantageous in the sense that it leads to biased estimates.
Therefore, we do not discard outliers in the following simulations.
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Whereas the estimation of partial e�ects in linear models is trivial, since they are identical to

the parameters itself or a combination of those, estimating partial e�ects in non-linear models is

on average hardly more di�cult. There exist two common measures to obtain a single number for

an average partial e�ect both relying on the choice probability CP (x) = P (y1 = 1|x) = E(y1|x)

also synonymously known as propensity score.18 Given the model introduced in Section 3, the

choice probability can be written as

E(y1i|xi) = CP (xi) = F−u1|x(xiψ|xi) (6)

where F· still represents the respective marginal CDF, and in terms of a better understanding of

the following derivations we stop suppressing the index i indicating the individual observations.

The �rst measure known as the APE averages individual partial e�ects across the distribution

of the respective explanatory variable, whereas the second measure, i.e. the partial e�ect of the

average (PEA), typically plugs the mean of the �tted values of the latent variable y∗1 into the

marginal CDF of the error term also known as link function (Wooldridge, 2010). Since a major

drawback of the PEA is that it may not represent the partial e�ect of any unit in the population,

which is in particular in the case of discrete explanatory variables (Wooldridge, 2010), we stick

to the APE de�nition to describe an average partial e�ect. Based on the choice probability this

is de�ned as

APEx =
1

n

n∑
i=1

∂ CP (xi)

∂ x
=

1

n

n∑
i=1

∂ F−u1|x(xiψ|xi)
∂ x

(7)

for all continuous x ∈ x and

APEx =
1

n

n∑
i=1

CP (x
(1)
i )− CP (x

(0)
i ) =

1

n

n∑
i=1

F−u1|x(xiψ|x(1)
i )− F−u1|x(xiψ|x(0)

i ) (8)

for all discrete x ∈ x where the superscripts (1) and (0) denote that the respective discrete

explanatory variable is being �xed at particular values.

In the presence of EEVs the calculation of partial e�ects is more ambitious than when the

model only contains exogenous explanatory variables. The choice probability E(y1|x) is no longer

a suitable measure since it is a�ected by the correlation between the error term of the structural

equation and the endogenous regressors (Lin & Wooldridge, 2015b).19 Lewbel et al. (2012)

propose a function called average index function (AIF) as a substitute for the choice probability

in the presence of EEVs. The AIF reads:

AIF (xi) = E(y1i|xiψ) = F−u1|xψ(xiψ|xiψ) (9)

In their point of view this measure re�ects the quantity of interest since it can be regarded

as a counterfactual propensity score, i.e. a propensity score if EEVs would not be present.

18This term is in particular used in the potential outcomes literature, see for instance Rosenbaum and Rubin
(1983).

19Only in the case when the marginal CDF of the error term is parametrized itself, the choice probability
remains to be a meaningful quantity of interest.
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Moreover, it o�ers the advantage that is relatively easy to estimate by a one-dimensional non-

linear regression due to the fact that xiψ is just a scalar.20 However, Lin and Wooldridge

(2015b) show that the AIF su�ers from the same weaknesses as the choice probability in terms

of estimating APEs when endogeneity is present. By providing examples of a simple linear

model as well as a BRM, the authors derive the bias the AIF exhibits in estimating a meaningful

response probability. Due to this insight, we make use of the concept of the ASF proposed by

Blundell and Powell (2003, 2004) which is widely accepted to be able to estimate counterfactual

propensity scores although it is computationally more cumbersome (Wooldridge, 2010). Given

our model described in Section 3 the ASF can be denoted as:

ASF (xi) = Eu1i(y1i) = Eu1i
[

1[xiψ + u1i > 0]
]

(10)

=

∫
1[xiψ > −u1i] fu1i(u1i)d(u1i) = F−u1i(xiψ)

where the elements of vector x are �xed and where Eu1i(·) denotes the expected value with

respect to u1i.

In simple words, the ASF is a function of speci�c values of the observed covariates which

breaks the correlation between the error term and the endogenous variables in the structural

equation by averaging out the unobservables contained in the error term across the population

without conditioning on the explanatory variables.21 Once properly estimated, the ASF replaces

the choice probability in the formulas de�ning the calculation of the APEs valid for the case

when no endogeneity is present.22

In terms of estimating partial e�ects for the recursive bivariate probit approach in the following

simulations, we make use of the choice probability in Equation 6. As already explained before,

this is appropriate despite the presence of endogenous variables since this ML method explicitly

assumes the marginal CDFs of the error terms of the structural and the reduced form equation

to follow a bivariate normal distribution (see Subsection 4.1.3).23

In terms of estimating partial e�ects for both types of the special regressor approach we take

up the idea by Lee and Li (2018). In fact, we introduce the concept of conditional ASFs to be

able to estimate the unconditional ASF for each individual i. To be more precise, we condition

on the values of the endogenous, the exogenous as well as the instrumental variables such that

Equation 10 reads as follows

ASF (xi) =

∫
Supp(y2,z)

Eu1i|y2,z(y1i|y2 = y2i, z = zi, v = vi) dFy2,z(y2i, zi) (11)

=

∫
Supp(y2,z)

[
F−u1i|y2,z(y2i, zi, vi)

]
fy2,z(y2i, zi) d(y2i, zi)

20See Derivation 2 in the Appendix for a derivation of the corresponding non-linear estimator.
21For more details, see Blundell and Powell (2004).
22Given the de�nitions of the choice probability, the AIF and the ASF, one can immediately see that in the

absence of endogeneity, i.e. u1 ⊥ x, all those measures are identical.
23For more details, see Greene (2017)
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where the conditional marginal CDF F−u1i|y2,z(y2i, vi, zi) is assumed to be di�erentiable with

respect to v. Instead of using the means of the variables contained in x as supposed by Lee and

Li (2018) to construct the index value â = xψ̂ which is then be used to rede�ne v as v = â−z1β̂,

we construct âi and hence the rede�ned vi for each observation i individually.24 The partial

e�ect of v for observation i can then be obtained by taking the derivative of Equation 11, with

respect to v:

∂ASF (xi)

∂v
=

∫
Supp(y2,z)

∂

∂v
Eu1i|y2,z(y1i|y2 = y2i, z = zi, v = vi) dFy2,z(y2i, zi) (12)

=

∫
Supp(y2,z)

[
∂

∂v
F−u1i|y2,z(y2i, zi, vi)

]
fy2,z(y2i, zi) d(y2i, zi)

= PEv(xi)

The individual partial e�ects of the variables y2 and those contained in z1 are obtained by

multiplying the respective coe�cients of the structural equation with the expression of Equation

12, for instance PEy2(xi) = γPEv(xi). APEs are obtained in analogy to Equation 7 as explained

before.

In terms of the estimation of the conditional marginal CDF F−u1i|y2,z(y2i, vi, zi) we follow

Lee and Li (2018) and use a non-parametric logistic series estimator.25 Let RK(vi, zi) be a

K-dimensional vector of basis functions and πK ∈ RK the argument which minimizes the log-

likehood function

Ln(π) =
n∑
i=1

y1i lnΛ
[
RK(y2i, zi, vi)

′π
]

+ (1− y1i) ln
[
1− Λ

[
RK(y2i, zi, vi)

′π
]]

(13)

with Λ(c) = expc/(1 + expc) being the logistic link function. Then F−u1i|y2,z(y2i, zi, vi) becomes

Λ(RK(y2i, zi, vi)
′π̂K) and this as well as the fact that each observation i is not a duplicate of

another observation can be used to simplify Equation 12 to

PEv(xi) =
1

n

n∑
i=1

[
Λ′
[
RK(y2i, zi, vi)

′π̂K
]
∗ ∂

∂v
RK(y2i, zi, vi)

′π̂K

∣∣∣∣
vi=âi−z1iβ̂

]
(14)

where Λ′ denotes the logistic probability density function (PDF) Λ′(c) = Λ(c)(1− Λ(c)).26

24If we would follow Lee and Li (2018) by using the means of x, we would obtain estimates for the partial e�ects
which can be compared to other PEA estimates. However, as explained previously, those are less meaningful and
not comparable to estimates of partial e�ects via the AIF.

25Due the speci�c conditional setting a non-parametric kernel regression is not an alternative to estimate the
conditional marginal CDF.

26Based on the idea of Lee and Li (2018) and the program sspecialreg of Baum (2012) which delivers estimates of
the parameters of the structural equation (as well as partial e�ects via the AIF), we wrote an own Stata program
called mspecialreg which estimates partial e�ects using the ASF constructed by the mentioned non-parametric
regression. The ado-�le is available upon request.
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5 Monte Carlo Simulations

In this section the results of the Monte Carlo simulations are presented to assess the performance

of the di�erent estimators introduced in the last section in the setting of a BRM with a binary

EEV. First, the design of the baseline setting is de�ned, which is then followed by the presen-

tation of the corresponding results. Afterwards, the results of di�erent scenarios are discussed

when some of the assumptions made in the baseline design are altered in order to test (1) the

impact of the distribution of the special regressor, (2) the prevalence of weak instruments, and

(3) di�erent assumptions regarding the endogeneity structure causing the omitted variable bias

when estimating Equation 1 without controlling for endogeneity.

5.1 Baseline DGP

For all subsequent simulations, the baseline DGP where the individual observations i = 1, . . . , n

are independently drawn from is assumed as follows:

The error terms (u1, u2) are chosen to be both normally distributed and linked to each other

by the means of a Gaussian copula such that they are jointly following a bivariate normal

distribution Φ2(u1, u2, θ):(
u1

u2

)
∼ Normal

[(
0

0

)
,

(
1 0.6

0.6 1

)]
The special regressor v is also assumed to be normally distributed:

v ∼ Normal(0, 2)

Without loss of generality, the set of exogenous variables z consists of one variable each for both

z1 and z2. The exogenous covariate z11 ∈ z1 and the instrument z21 ∈ z2 are generated as

follows:27

z11 ∼ Normal(0, 1) + 0.1 ∗ v

z21 ∼ Normal(0, 1)

27A correlation between the instrument and the special regressor would not cause a violation of any assumption.
However, since this correlation would have a major impact on the strength of the instrument in the parametric
linear in comparison to the semi-parametric non-linear approaches, we set the correlation to zero in favor of a
more meaningful comparison.
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The binary EEV and the binary dependent variable are generated as:

y∗2 = 0.1 + 1.5 ∗ z21 − 0.8 ∗ z11 + 0 ∗ v + u2

y2 = 1[y∗2 > 0]

y∗1 = 0.1 + 1.0 ∗ y2 − 0.5 ∗ z11 + 1.0 ∗ v + u1

y1 = 1[y∗1 > 0]

where the coe�cients are chosen such that the share of zeros and ones is close to 50% for y1 as

well as y2.
28

Hence, the true ASF in the baseline setting for observation i which is identical to the choice

probability is:

ASF (xi) = CP (xi) = Φ(0.1 + 1.0 ∗ y2i − 0.5 ∗ z11i + 1.0 ∗ vi)

and therefore the true APEs for y2 and z11 respectively are:

APEtruey2 =
1

n

n∑
i=1

[
Φ(0.1 + 1.0 ∗ 1− 0.5 ∗ z11i + 1.0 ∗ vi)− Φ(0.1 + 1.0 ∗ 0− 0.5 ∗ z11i + 1.0 ∗ vi)

]
APEtruez11 =

1

n

n∑
i=1

φ(0.1 + 1.0 ∗ y2i − 0.5 ∗ z11i + 1.0 ∗ vi) ∗ −0.5

The estimated APEs of the di�erent estimators described in Section 3 are contrasted to their

true values by the measures of the mean di�erence (BIAS) and the root mean squared error

(RMSE):

BIAS =
1

R

R∑
r=1

(ÂPEr −APEtrue
r ) RMSE =

√√√√ 1

R

R∑
r=1

(ÂPEr −APEtrue
r )2

where R is the number of replications which is set to 1000 for all simulations.

5.2 Results

5.2.1 Baseline

Table 1 shows the results of Monte Carlo simulations for di�erent numbers of observations in a

setting described in the previous subsection. In this setting the instrument's power is strong and

the second and third requirement of the special regressor approach are ful�lled as well.29 Besides

the estimators mentioned in Section 4, results of naive probit estimations are shown in column

(6) to contrast the estimators taken into account the endogeneity of y2.

28The coe�cient of the special regressor v in the equation determining y∗2 is set to zero without the loss of
generality.

29Note that the �rst requirement of the special regressor approach is ful�lled by de�nition, see Subsection 4.1.4.
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Among the di�erent estimators listed in the table, there does not exist a clear pattern with

respect to the measure of the BIAS introduced in the previous subsection. While the probit

estimator has, as expected, always the largest bias, i.e. it is upward biased by 54%, for four

out of the �ve di�erent sample sizes the special regressor sorted data estimator has the second

largest bias. For the estimators displayed in column (1) until (4) the order of the estimators in

terms of the smallest bias depends on the sample size, and the bias does not shrink consistently

with the increase of the sample size among each estimator. As it can explicitly be seen by the

last column of Table A1, this is due to the fact that the bias bounces around for all estimators

except the probit one with an increase in the sample size.

With respect to the measure of the RMSE, the recursive bivariate probit approach always

dominates the other estimators. Hence, it is the most e�cient one. The GI2SLS estimator

always performs better than the 2SLS estimator which in turn is dominated by the special

regressor kernel density estimator. Similar to the �nding in terms of the BIAS, the special

regressor sorted data estimator as well as the probit estimator always have the relative largest

RMSEs.

Table 1: Simulation Results for APE of y2 - Baseline

(1) (2) (3) (4) (5) (6)

2SLS Generated Recursive Special Reg. Special Reg. Probit

Instr. 2SLS Biprobit Kernel Dens. Sorted Data

Baseline true APEy2 = 0.173

N = 10000

BIAS 0.0023 0.0028 -0.0001 -0.0027 -0.0039 0.0934

RMSE 0.0117 0.0109 0.0091 0.0130 0.0163 0.0936

N = 5000

BIAS 0.0026 0.0029 0.0005 -0.0016 -0.0033 0.0933

RMSE 0.0165 0.0152 0.0131 0.0182 0.0229 0.0938

N = 1000

BIAS 0.0040 0.0055 0.0016 -0.0013 -0.0051 0.0937

RMSE 0.0368 0.0343 0.0292 0.0419 0.0513 0.0959

N = 500

BIAS 0.0009 0.0018 -0.0013 -0.0027 -0.0068 0.0930

RMSE 0.0507 0.0475 0.0414 0.0582 0.0716 0.0975

N = 250

BIAS -0.0024 0.0002 -0.0047 -0.0070 -0.0129 0.0927

RMSE 0.0718 0.0658 0.0591 0.0825 0.0981 0.1016

Scenario characteristics: u1 ∼ Normal(0, 1), u2 ∼ Normal(0, 1), Cθ = Gaussian, corr(u1, u2) = 0.6, SD(v) =

2.0, F [δz21 ] ≥ 100.00; The BIAS is de�ned as the average di�erence between the estimated and the true APE.

RMSE is the root mean squared error. Detailed statistics can be found in Table A1. A visual overview of the

empirical distributions of the di�erent estimates is given by Figure A1.

Some of these �ndings of the baseline setting could have been anticipated without any simula-

tion like the ones that (1) the non-linear ML estimator should be the best performing estimator

given this setting, (2) that an estimator based on a sorted data density should be less precise than

a comparable one based on a kernel density, or (3) that each semi-parametric approach should be

less e�cient than a fully parametrized one. However, this baseline setting o�ers two new main

insights: In terms of the BIAS, the �exible semi-parametric special regressor approach does not
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perform better than both parametric linear estimators (2SLS and GI2SLS). Moreover, although

the di�erence in the performance of the two parametric linear estimators is rather small - which

can also be seen in Figure A1 sketching the di�erent empirical distributions of the APEs for the

case of N = 10.000 - the 2SLS estimator is relatively less biased while the GI2SLS estimator is

relatively more e�cient.

5.2.2 Special Regressor

In order to test the relevance of the large support requirement of the special regressor approach

(cf. Subsection 4.1.4), the variance of the special regressor v is altered. While the standard

deviations of v and (y1 − v) have been equal to 2 and 1.38 respectively in the baseline (cf.

Subsection 5.1), Table 2 presents three di�erent cases where the standard deviation of (y1 − v)

is either approximately equal, lower or considerably higher than the standard deviation of v.

The �rst panel shows the case when the standard deviations of v and (y1 − v) are both set to

approximately 1.38. The second panel re�ects the case when the standard deviation of v is set

to 0.5 while the standard deviation of (y1 − v) is kept constant at 1.38. Finally, the last panel

reports the case when the standard deviation of the special regressor considerably exceeds the

one of the di�erence between the structural equation's regressand and the special regressor. To

be more precise, the standard deviation of v is set to the value of 5 while the standard deviation

of (y1 − v) is kept constant at the value of 1.38.30

Table 2: Simulation Results for APE of y2 - Di�erent Support for Special Regressor

(1) (2) (3) (4) (5) (6)

2SLS Generated Recursive Special Reg. Special Reg. Probit

Instr. 2SLS Biprobit Kernel Dens. Sorted Data

SD(v) ≈ 1.38
SD(y1 − v) ≈ 1.38

true APEy2 = 0.215

N = 10000

BIAS 0.0066 0.0075 -0.0004 -0.0090 -0.0095 0.1171

RMSE 0.0134 0.0131 0.0099 0.0180 0.0230 0.1173

N = 5000

BIAS 0.0074 0.0081 0.0005 -0.0075 -0.0091 0.1169

RMSE 0.0186 0.0178 0.0147 0.0218 0.0277 0.1173

N = 1000

BIAS 0.0085 0.0102 0.0014 -0.0088 -0.0113 0.1169

RMSE 0.0397 0.0378 0.0331 0.0456 0.0570 0.1191

N = 500

BIAS 0.0070 0.0083 -0.0001 -0.0091 -0.0151 0.1169

RMSE 0.0545 0.0512 0.0469 0.0637 0.0819 0.1214

N = 250

BIAS 0.0052 0.0066 -0.0037 -0.0128 -0.0159 0.1177

RMSE 0.0756 0.0705 0.0661 0.0931 0.1104 0.1265

SD(v) ≈ 0.5
SD(y1 − v) ≈ 1.38

true APEy2 = 0.285

-continued on next page-

30A relatively larger increase in the standard deviation of v is not meaningful since the variation of y1 will be
disproportionally a�ected.
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- Table 2 continued -

N = 10000

BIAS 0.0222 0.0248 -0.0002 -0.0520 -0.0489 0.1588

RMSE 0.0260 0.0279 0.0125 0.0820 0.0822 0.1591

N = 5000

BIAS 0.0230 0.0256 0.0007 -0.0601 -0.0564 0.1590

RMSE 0.0297 0.0310 0.0170 0.0902 0.0907 0.1594

N = 1000

BIAS 0.0223 0.0253 0.0004 -0.0646 -0.0649 0.1583

RMSE 0.0472 0.0463 0.0380 0.1057 0.1130 0.1605

N = 500

BIAS 0.0222 0.0249 -0.0021 -0.0827 -0.0843 0.1574

RMSE 0.0634 0.0609 0.0552 0.1275 0.1348 0.1619

N = 250

BIAS 0.0212 0.0247 -0.0043 -0.0910 -0.0911 0.1586

RMSE 0.0849 0.0814 0.0786 0.1426 0.1494 0.1674

SD(v) ≈ 5.0
SD(y1 − v) ≈ 1.38

true APEy2 = 0.081

N = 10000

BIAS 0.0001 0.0002 -0.0001 0.0014 0.0009 0.0431

RMSE 0.0104 0.0097 0.0062 0.0103 0.0124 0.0434

N = 5000

BIAS -0.0002 -0.0000 0.0001 0.0019 0.0011 0.0430

RMSE 0.0153 0.0138 0.0087 0.0146 0.0174 0.0435

N = 1000

BIAS 0.0015 0.0012 -0.0005 0.0027 0.0002 0.0431

RMSE 0.0338 0.0307 0.0198 0.0325 0.0402 0.0453

N = 500

BIAS -0.0015 -0.0019 -0.0011 0.0020 0.0005 0.0432

RMSE 0.0478 0.0441 0.0291 0.0461 0.0558 0.0478

N = 250

BIAS -0.0028 -0.0019 -0.0016 -0.0005 -0.0050 0.0422

RMSE 0.0646 0.0598 0.0390 0.0724 0.0788 0.0502

Scenario characteristics: u1 ∼ Normal(0, 1), u2 ∼ Normal(0, 1), Cθ = Gaussian, corr(u1, u2) = 0.6, F [δz21 ] ≥ 100.00;

The BIAS is de�ned as the average di�erence between the estimated and the true APE. RMSE is the root mean squared

error. Detailed statistics can be found in Table A2. A visual overview of the empirical distributions of the di�erent

estimates is given by Figure A2.

In contrast to the baseline setting which is de�ned by a standard deviation of v which is larger

than the one used in the regressions of the �rst panel but smaller than the one of the regressions

displayed in the third panel, the recursive bivariate probit estimator always has the smallest bias

in the scenarios described by the �rst two panels. For the other estimators and the scenario

depicted by the third panel of Table 2, there does not seem to exist a clear order in terms of the

smallest bias, even for the di�erent types of the special regressor approach. Only the naive probit

estimator is always biased most. With respect to the RMSE, the order of the estimators remains

the same as in the baseline with the exception that in the third scenario when the standard

deviation of the special regressor largely exceeds the one of the di�erence between the structural

equation's regressand and the special regressor, the relative rank of the special regressor kernel

density estimator changes with the rank of the 2SLS estimator (for all but the smallest sample

size).
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In line with Bontemps and Nauges (2017), Table 2 shows the importance of the large sup-

port requirement in terms of the property of relatively unbiased and e�cient estimates for the

special regressor approach. The drop in the standard deviation of the special regressor as dis-

played in panel two leads to a relative increase of the bias of 18% in the largest sample, and

the RMSE increases by up to the factor of fourteen in comparison to the case when the above

mentioned standard deviations are of equivalent size.31 On the opposite, an increase in the stan-

dard deviation of the special regressor in particular collapses the variation of the special regressor

estimator.32 However, this e�ect is absolutely modest in terms of the relative performance of the

di�erent estimators.

5.2.3 Weak Instruments

The relevance condition of any IV strategy ensures that the variation in the instruments su�-

ciently explains the exogenous part of the variation of the endogenous variable. If this condition

is not ful�lled, the parameter estimates are biased and experience a large spread (Angrist &

Pischke, 2009). For linear models it is widely accepted to assess this condition by the rule of

thumb suggested by Staiger and Stock (1997). To be precise, a set of instruments is regarded

as relevant in terms of "strong enough" if the F-statistic of the test of joint signi�cance of the

instruments' �rst stage coe�cients exceeds the critical value of ten. However, as noted by Stock,

Yogo, and Wright (2002), this critical value is only meaningful in some speci�c cases since it

heavily depends on the number of instruments. Stock et al. propose two alternative de�nitions

of weak instruments which have been used in the �eld of econometrics. Based on simulations,

Stock and Yogo (2005) tabulate critical values which depend on certain parameters like the num-

ber of endogenous regressors and the number of instruments. In the case of a single instrument

only their de�nition which is based on the size of a Wald test on the structural parameter of

interest γ̂ = γ0, where γ0 is the true value, is applicable. It delivers a critical value of 16.38 for

the F-statistic of the test of joint signi�cance of the instruments' �rst stage coe�cients when the

share of wrong rejections is set to a maximum of 10% given a nominal level of 5%. For non-linear

models, there does not exist any rule of thumb or formal de�nition when a set of instruments has

to be considered as too weak to resolve endogeneity. We therefore follow the recommendation

given by Nichols (2011) and use both critical value de�nitions mentioned above as benchmarks

for non-linear models.33

The three di�erent panels of Table 3 report the results of the scenarios when (1) the in-

strument's strength is not su�cient according to both critical values [F [δz21 = 0] ≈ 5], (2) the

instrument's strength is not su�cient according to the de�nition of Stock and Yogo (2005) but

su�cient according to the rule of thumb of Staiger and Stock (1997) [F [δz21 = 0] ≈ 10], and (3)

the instruments' strength is su�cient according to both critical values [F [δz21 = 0] ≈ 20] but not

as strong as in the baseline where it exceeds the value of 100. The value of the F-statistic al-

31For the other estimators the RMSE just increases by the half of this factor at most.
32This reduction amounts up to 40% relative to the scenario displayed in the �rst panel.
33Je�rey Wooldridge gives the same recommendation in the thread No. 361582 at www.statalist.org.
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ways refers to the test of the intrument's power of the 2SLS estimator and the special regressor

estimators which are similar due to the chosen DGP as outlined in footnote 27. Due to the spe-

ci�c three-step estimation procedure of the GI2SLS estimator, the power of the instrument has

a self-reinforcing character for this estimator and therefore the F-statistic of the corresponding

weak instrument test is always larger in comparison to the other ones.34

The �rst panel of Table 3 shows that in the case of weak instruments the 2SLS estimator

as well as both special regressor estimators are heavily biased. The bias of the 2SLS estimator

is actually up to 80%. Both special regressor estimators always underestimate by ca. 29%.

The bias of the recursive bivariate probit approach varies "only" between 2% and 25%, which

to some extent may be due to the fact that the assumed non-linearity helps in predicting the

endogenous variable (cf. Wooldridge (2010)). However in terms of e�ciency, the bivariate probit

estimator as well as the GI2SLS estimator with its self-reinforced power of the instrument are

poor performing.35 In comparison to the baseline, the RMSE increases by the minimum factor

of 5.3 and 2.2 respectively.

Table 3: Simulation Results for APE of y2 - Weak instrument setting

(1) (2) (3) (4) (5) (6)

2SLS Generated Recursive Special Reg. Special Reg. Probit

Instr. 2SLS Biprobit Kernel Dens. Sorted Data

F [δz21 ] ≈ 5 true APEy2 = 0.173

N = 10000

BIAS 0.1985 0.0090 0.0051 -0.0506 -0.0666 0.1724

RMSE 5.6721 0.0778 0.0389 0.3611 0.3998 0.1726

N = 5000

BIAS -0.7742 0.0104 0.0094 -0.0471 -0.0635 0.1722

RMSE 15.6767 0.1079 0.0601 0.3630 0.4009 0.1725

N = 1000

BIAS -0.0377 0.0166 0.0321 -0.0351 -0.0456 0.1711

RMSE 1.5652 0.2166 0.1290 0.3562 0.3906 0.1723

N = 500

BIAS 0.1200 -0.0006 0.0425 -0.0285 -0.0427 0.1709

RMSE 3.2988 0.3550 0.1629 0.3583 0.3903 0.1736

N = 250

BIAS -0.0229 0.0070 0.0437 -0.0563 -0.0599 0.1686

RMSE 2.9437 0.5209 0.1894 0.3699 0.4025 0.1740

F [δz21 ] ≈ 10 true APEy2 = 0.173

N = 10000

BIAS -0.0227 0.0090 0.0051 -0.0352 -0.0463 0.1723

RMSE 0.3526 0.0760 0.0384 0.2731 0.3141 0.1725

N = 5000

BIAS -0.0498 0.0098 0.0080 -0.0228 -0.0309 0.1720

RMSE 0.9749 0.1031 0.0552 0.2737 0.3117 0.1722

-continued on next page-

34For instance, in the case of the �rst panel, i.e. a F-statistic of �ve for the test using the estimates of the 2SLS
and the special regressor estimator, the F-statistic for the same test using the estimates of the GI2SLS estimator
varies between 8.59 (N=250) and 109.39 (N=10.000).

35Since the other estimators are clearly biased, it does not make sense to compare their performance in terms
of the RMSE.
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- Table 3 continued -

N = 1000

BIAS -0.0220 0.0137 0.0259 -0.0284 -0.0467 0.1701

RMSE 0.4344 0.1886 0.1202 0.2766 0.3218 0.1713

N = 500

BIAS -0.0039 0.0007 0.0283 -0.0227 -0.0412 0.1690

RMSE 0.6164 0.2483 0.1450 0.2779 0.3192 0.1717

N = 250

BIAS -0.0466 0.0092 0.0299 -0.0387 -0.0423 0.1655

RMSE 0.7158 0.2611 0.1712 0.2798 0.3122 0.1708

F [δz21 ] ≈ 20 true APEy2 = 0.173

N = 10000

BIAS -0.0046 0.0089 0.0050 -0.0193 -0.0182 0.1721

RMSE 0.2041 0.0730 0.0379 0.2019 0.2371 0.1722

N = 5000

BIAS -0.0028 0.0088 0.0071 -0.0125 -0.0215 0.1717

RMSE 0.1974 0.0950 0.0519 0.2025 0.2447 0.1719

N = 1000

BIAS 0.0029 0.0119 0.0159 -0.0173 -0.0250 0.1685

RMSE 0.2027 0.1493 0.1027 0.2028 0.2399 0.1697

N = 500

BIAS -0.0076 -0.0005 0.0114 -0.0159 -0.0221 0.1660

RMSE 0.1977 0.1706 0.1195 0.2043 0.2416 0.1688

N = 250

BIAS -0.0127 0.0017 0.0096 -0.0256 -0.0298 0.1592

RMSE 0.1988 0.1747 0.1385 0.2081 0.2391 0.1647

Scenario characteristics: u1 ∼ Normal(0, 1), u2 ∼ Normal(0, 1), Cθ = Gaussian, corr(u1, u2) = 0.6, SD(v) = 2.0;

The BIAS is de�ned as the average di�erence between the estimated and the true APE. RMSE is the root mean

squared error. Detailed statistics can be found in Table A3. A visual overview of the empirical distributions of the

di�erent estimates is given by Figure A3.

When the instrument's power is �xed at a value which is still regarded as the global critical

value by many applied econometricians, i.e. the value of ten stemming from the rule of thumb of

Staiger and Stock (1997), the performance of the 2SLS as well as both special regressor estimators

improve while the performance of the GI2SLS, the bivariate probit as well as the naive probit

estimator does not change considerably in comparison to the previous scenario. The recursive

bivariate probit approach still exhibits the smallest RMSE for all di�erent sample sizes and is the

relatively less biased for larger samples. The 2SLS estimator is for some simulations relatively

more or less biased than both special regressor estimators. However, for each sample size it has

the largest spread. The spread of the 2SLS estimator is even larger than the one of the probit

estimator which is expected to be biased.

In the scenario shown in the third panel of Table 3 the Stock and Yogo (2005) de�nition

of the prevalence of strong instruments is met but the instrument is not as strong as in the

baseline setting. For all estimators displayed in the �rst �ve columns the bias is moderate. The

maximum amounts to 17% and the 2SLS estimator actually has the smallest bias for the majority

of simulations which can be explained by the bouncing behavior of the bias as reported in the

last column of Table A3. From the estimators taking into account the endogenity of y2 the two

types of the special regressor estimator exhibit always the largest bias. In terms of the RMSE
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the pattern is relatively more similar to the baseline in comparison to those described by the

other panels of Table 3.

To sum up, by taking the de�nition of weak instruments from linear models as reference to

assess the strength of the instrument in the model described by Equations 1 & 2, the simulations

show that all estimators are reliant on a su�ciently strong instrument. If the instrument is

assumed to be rather weak, the recursive bivariate probit as well as the GI2SLS estimator are

the ones who are relatively best performing. The special regressor approach o�ers no advantage

in the case of weak instruments. Even when the de�nition of strong instruments by Stock and

Yogo (2005) is met, the estimates of the 2SLS and the special regressor estimators should be

seen with caution because of their large spread.

5.2.4 Endogeneity Structure

In the following, the outcomes of di�erent scenarios are discussed when di�erent parameters that

are setting the endogeneity structure in the DGP are altered. First, the e�ect of the degree

of endogeneity on the performance of the estimators is investigated. Second, the impact of

altering the joint CDF of the error terms (u1, u2) is described and �nally it is analyzed how the

distributional assumptions on the marginal CDFs of the error terms are in�uencing the ranking

of the estimators in terms of a low bias as well as a low RMSE.

The two panels of Table 4 report the results of scenarios when the degree of endogeneity

re�ected by the Spearman correlation coe�cient of the error terms is either relatively weak

(�rst panel) or relatively strong (second panel). In the former case the bias is obviously low

for all estimators even for the probit one. The bias of both linear parametric estimators is of

similar magnitude as the one of the ML estimator while the bias of the two special regressor

estimators is always larger in absolute values and negative, i.e. the special regressor estimators

always underestimate the true e�ect as it was the case in the majority of the previously discussed

scenarios. In terms of a low RMSE, the pattern is the same as in the baseline (corr(u1, u2) = 0.6),

with the exception that the probit estimator exhibits the lowest RMSE until the case of the

sample size of N = 5000.

In the simulations shown in the second panel of Table 4 the correlation coe�cient of the error

terms has been set to a value which is close to the one describing a perfect positive relation-

ship. For all sample sizes except the smallest one, the recursive bivariate probit estimator is the

relatively most unbiased while the naive probit estimator is the relatively most biased. Among

the other estimators there does not exist a clear pattern which is due to the bouncing behaviour

re�ected by the fact that the bias does not shrink with the increase of the sample size. With

respect to the spread of the estimates, the pattern remains the same as in the baseline with the

bivariate probit estimator being the relative most e�cient one. Moreover, the increase of the

RMSE of each estimator in comparison to the baseline is absolutely modest.

In total, the simulations of Table 4 show that the recursive bivariate probit estimator is the

22



most robust. In the case of a weak degree of endogeneity all estimators under investigation might

be meaningful to use even the one ignoring endogeneity which would mean to accept a (small)

bias but to gain precision.

Table 4: Simulation Results for APE of y2 - Di�erent degree of endogeneity

(1) (2) (3) (4) (5) (6)

2SLS Generated Recursive Special Reg. Special Reg. Probit

Instr. 2SLS Biprobit Kernel Dens. Sorted Data

corr(u1,u2) = 0.1 true APEy2 = 0.173

N = 10000

BIAS 0.0002 0.0002 0.0000 -0.0027 -0.0040 0.0156

RMSE 0.0117 0.0107 0.0096 0.0126 0.0166 0.0169

N = 5000

BIAS 0.0000 0.0001 0.0001 -0.0020 -0.0036 0.0153

RMSE 0.0165 0.0151 0.0135 0.0181 0.0223 0.0178

N = 1000

BIAS 0.0009 0.0017 0.0003 -0.0027 -0.0061 0.0153

RMSE 0.0366 0.0338 0.0299 0.0406 0.0502 0.0259

N = 500

BIAS -0.0002 -0.0012 -0.0017 -0.0020 -0.0080 0.0145

RMSE 0.0517 0.0486 0.0442 0.0566 0.0678 0.0335

N = 250

BIAS -0.0028 -0.0020 -0.0036 -0.0060 -0.0101 0.0140

RMSE 0.0712 0.0663 0.0628 0.0797 0.0972 0.0453

corr(u1,u2) = 0.9 true APEy2 = 0.173

N = 10000

BIAS 0.0046 0.0058 -0.0002 0.0206 0.0194 0.1406

RMSE 0.0122 0.0119 0.0077 0.0272 0.0289 0.1408

N = 5000

BIAS 0.0046 0.0058 -0.0000 -0.0011 -0.0029 0.1404

RMSE 0.0171 0.0165 0.0118 0.0193 0.0245 0.1407

N = 1000

BIAS 0.0064 0.0082 0.0008 -0.0008 -0.0019 0.1414

RMSE 0.0377 0.0353 0.0257 0.0429 0.0534 0.1429

N = 500

BIAS 0.0027 0.0043 -0.0012 -0.0023 -0.0048 0.1408

RMSE 0.0507 0.0478 0.0371 0.0583 0.0726 0.1436

N = 250

BIAS 0.0001 0.0035 0.0029 -0.0066 -0.0122 0.1406

RMSE 0.0709 0.0647 0.0497 0.0843 0.1018 0.1462

Scenario characteristics: u1 ∼ Normal(0, 1), u2 ∼ Normal(0, 1), Cθ = Gaussian, SD(v) = 2.0, F [δz21 ] ≥ 100.00; The

BIAS is de�ned as the average di�erence between the estimated and the true APE. RMSE is the root mean squared

error. Detailed statistics can be found in Table A4. A visual overview of the empirical distributions of the di�erent

estimates is given by Figure A4.

Table 5 contains results from four di�erent scenarios testing if the joint distribution of the

error terms has an impact on the performance of the estimators.36 As explained in Section 3,

di�erent copula functions are used to alternate the joint distribution. From the Archimedean

copula class the Clayton, Frank and Gumbel copula are chosen (panel one to three of Table 5)

while from the elliptical copula class the t copula (panel four) is used as an alternative to the

36The marginal distributions of the error terms are kept to be normal distributed as it was the case in the
baseline setting, cf. Section 5.1. They are altered in the scenarios shown in Table 6.
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normal copula of the baseline.37 In principle, copula functions are fully �exible in de�ning joint

distributions in comparison to assuming a joint normal CDF. The latter one is often assumed

just due to the lack of information although it does not have to represent the reality. In particular

in the �eld of �nance di�erent copula functions have been used to set up realistic dependence

structures.38

For almost all scenarios shown in Table 5 the assessment of the estimators' performance with

respect to the RMSE does not change from the one of the baseline. Only for the case of a joint

error distribution realized by a t copula in large samples the recursive bivariate probit estimator

has not the relatively lowest RMSE. In fact, both parametric linear estimators slightly perform

better in such a scenario.

Table 5: Simulation Results for APE of y2 - Di�erent joint CDF

(1) (2) (3) (4) (5) (6)

2SLS Generated Recursive Special Reg. Special Reg. Probit

Instr. 2SLS Biprobit Kernel Dens. Sorted Data

Cθ = Clayton true APEy2 = 0.173

N = 10000

BIAS 0.0022 0.0023 0.0018 -0.0045 -0.0058 0.0974

RMSE 0.0112 0.0104 0.0090 0.0140 0.0175 0.0977

N = 5000

BIAS 0.0014 0.0017 0.0016 -0.0030 -0.0040 0.0976

RMSE 0.0157 0.0144 0.0126 0.0184 0.0245 0.0980

N = 1000

BIAS 0.0019 0.0022 0.0006 -0.0034 -0.0059 0.0973

RMSE 0.0383 0.0348 0.0290 0.0414 0.0510 0.0994

N = 500

BIAS 0.0002 0.0011 -0.0011 -0.0024 -0.0063 0.0970

RMSE 0.0510 0.0479 0.0420 0.0565 0.0728 0.1016

N = 250

BIAS 0.0036 0.0052 0.0011 -0.0011 -0.0028 0.0971

RMSE 0.0687 0.0658 0.0586 0.0807 0.0988 0.1055

Cθ = Frank true APEy2 = 0.173

N = 10000

BIAS 0.0024 0.0025 0.0014 -0.0025 -0.0040 0.0958

RMSE 0.0111 0.0103 0.0086 0.0126 0.0161 0.0960

N = 5000

BIAS 0.0018 0.0023 0.0012 -0.0021 -0.0040 0.0957

RMSE 0.0157 0.0145 0.0129 0.0182 0.0232 0.0961

N = 1000

BIAS 0.0023 0.0028 0.0011 -0.0026 -0.0050 0.0954

-continued on next page-

37Visualizations of the realized (joint) error term distributions by the di�erent copula functions are represented
by Figures A7, A8, A9, A10 and A11.

38For instance, Longin and Solnik (2001) show that for describing the dependence structure of international
equity markets, copula functions derived from the extreme value theory are better in describing the reality as
multivariate normal distributions. In the same vein, Ang and Chen (2002) describe that the data speaks against a
joint normal distribution of U.S. stock and U.S. aggregated market performance but that the dependence structure
could be captured by copula functions. MacKenzie and Spears (2014) explain how the usage of the inadequately
used normal copula contributed to the credit crisis in 2007. Low, Alcock, Fa�, and Brailsford (2013) show that
Clayton copulas are the best in describing downside correlations of returns for portfolios with 3 - 12 constituents.
For a �eld not related to �nance, Wu (2014) shows that asymmetric copulas help to explain car warranty claims.
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- Table 5 continued -

RMSE 0.0381 0.0347 0.0294 0.0414 0.0517 0.0976

N = 500

BIAS 0.0010 0.0023 -0.0006 -0.0017 -0.0058 0.0961

RMSE 0.0514 0.0483 0.0424 0.0566 0.0702 0.1004

N = 250

BIAS 0.0030 0.0046 0.0016 -0.0019 -0.0073 0.0959

RMSE 0.0687 0.0653 0.0574 0.0801 0.0950 0.1043

Cθ = Gumbel true APEy2 = 0.173

N = 10000

BIAS 0.0030 0.0037 0.0025 -0.0021 -0.0031 0.0912

RMSE 0.0113 0.0109 0.0091 0.0128 0.0166 0.0914

N = 5000

BIAS 0.0029 0.0038 0.0026 -0.0016 -0.0030 0.0910

RMSE 0.0166 0.0154 0.0136 0.0190 0.0241 0.0915

N = 1000

BIAS 0.0048 0.0053 0.0031 -0.0015 -0.0047 0.0913

RMSE 0.0351 0.0326 0.0287 0.0397 0.0493 0.0933

N = 500

BIAS 0.0064 0.0063 0.0037 0.0030 -0.0015 0.0922

RMSE 0.0528 0.0484 0.0419 0.0584 0.0716 0.0966

N = 250

BIAS -0.0005 0.0028 0.0005 -0.0041 -0.0088 0.0912

RMSE 0.0694 0.0637 0.0573 0.0833 0.1015 0.0996

Cθ = t true APEy2 = 0.173

N = 10000

BIAS 0.0032 0.0040 0.0107 -0.0028 -0.0037 0.0885

RMSE 0.0119 0.0113 0.0139 0.0130 0.0168 0.0888

N = 5000

BIAS 0.0033 0.0042 0.0107 -0.0017 -0.0037 0.0883

RMSE 0.0162 0.0150 0.0166 0.0180 0.0230 0.0888

N = 1000

BIAS 0.0047 0.0065 0.0112 -0.0015 -0.0035 0.0892

RMSE 0.0372 0.0353 0.0314 0.0418 0.0508 0.0916

N = 500

BIAS 0.0018 0.0029 0.0073 -0.0027 -0.0086 0.0879

RMSE 0.0502 0.0478 0.0423 0.0573 0.0694 0.0928

N = 250

BIAS 0.0002 0.0035 0.0059 -0.0066 -0.0090 0.0894

RMSE 0.0725 0.0665 0.0600 0.0826 0.0980 0.0989

Scenario characteristics: u1 ∼ Normal(0, 1), u2 ∼ Normal(0, 1), corr(u1, u2) = 0.6, SD(v) = 2.0, F [δz21 ] ≥ 100.00;

The BIAS is de�ned as the average di�erence between the estimated and the true APE. RMSE is the root mean

squared error. Detailed statistics can be found in Table A5. A visual overview of the empirical distributions of the

di�erent estimates is given by Figure A5.

With respect to the property of an unbiased estimator, the recursive bivariate probit estimator

strictly dominates the other estimators when the joint CDF of the error terms is set by a Frank

copula, i.e. panel two of Table 5. For all other scenarios a bouncing behavior of the bias is

visible for all estimators where the GI2SLS estimator always overestimates and both special

regressor estimators always underestimate the true APE. In absolute terms the biases are rather

comparable to the ones of the baseline setting and the maximum value for all scenarios shown

in Table 5 amounts to a bias of 6.5%.
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In general, Table 5 shows that all estimators discussed in Section 4 are quite robust to di�erent

joint distributions of (u1, u2). While this might be anticipated for the semi-parametric estimators

(cf. Section 4.1.4), it is a key insight that even when the bivariate normality assumption of the

recursive bivariate probit approach is not met, its estimator is the best performing among all

tested ones and both parametric linear estimators are qualitatively good approximations.39

Instead of focusing on the impact of the joint CDF of the error terms, Table 6 presents the

results when the baseline DGP's assumption on the normal marginal distribution of the error

terms is altered. In the �rst panel the results of the scenario when both error terms follow a

F-distribution with ten and six degrees of freedoms each are displayed. The second panel re�ects

the scenario when both u1 and u2 are logistically distributed with a scale of 0.9. In the third

panel, the distribution of the error terms is set to follow a t-distribution with three degrees of

freedoms. In all scenarios the joint CDF is kept to be normal distributed as it has been in the

baseline.

Table 6: Simulation Results for APE of y2 - Di�erent marginal CDFs

(1) (2) (3) (4) (5) (6)

2SLS Generated Recursive Special Reg. Special Reg. Probit

Instr. 2SLS Biprobit Kernel Dens. Sorted Data

u1 ∼ F (10, 6)
u2 ∼ F (10, 6)

true APEy2 = 0.172

N = 10000

BIAS 0.0093 0.0099 0.0055 0.0360 0.0346 0.0906

RMSE 0.0149 0.0145 0.0109 0.0601 0.0575 0.0908

N = 5000

BIAS 0.0092 0.0097 0.0056 0.0380 0.0364 0.0902

RMSE 0.0186 0.0176 0.0145 0.0680 0.0675 0.0907

N = 1000

BIAS 0.0109 0.0116 0.0053 0.0387 0.0349 0.0910

RMSE 0.0373 0.0345 0.0298 0.0886 0.0979 0.0935

N = 500

BIAS 0.0072 0.0067 0.0013 0.0185 0.0142 0.0878

RMSE 0.0533 0.0485 0.0432 0.1047 0.1096 0.0930

N = 250

BIAS 0.0061 0.0079 0.0015 0.0098 0.0008 0.0896

RMSE 0.0693 0.0642 0.0588 0.1151 0.1320 0.0990

u1 ∼ log(0, 0.9)
u2 ∼ log(0, 0.9) true APEy2 = 0.154

N = 10000

BIAS 0.0064 0.0071 -0.0011 -0.0005 -0.0010 0.1675

RMSE 0.0160 0.0158 0.0131 0.0246 0.0282 0.1676

N = 5000

BIAS 0.0057 0.0066 -0.0016 -0.0016 -0.0021 0.1672

RMSE 0.0221 0.0215 0.0192 0.0328 0.0385 0.1675

N = 1000

BIAS 0.0077 0.0088 -0.0002 -0.0016 -0.0024 0.1673

RMSE 0.0474 0.0457 0.0413 0.0630 0.0771 0.1689

-continued on next page-

39A most recent study by Han and Lee (2019) solely focusing on a ML estimation in the class of the recursive
bivariate probit approach comes to the same result, i.e. that this estimator is quite robust to misspeci�cation
with respect to di�erent joint distributions of the error terms.
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- Table 6 continued -

N = 500

BIAS 0.0028 0.0036 -0.0043 -0.0063 -0.0093 0.1664

RMSE 0.0662 0.0638 0.0594 0.0842 0.1029 0.1698

N = 250

BIAS 0.0016 0.0031 -0.0060 -0.0088 -0.0156 0.1675

RMSE 0.0931 0.0899 0.0860 0.1137 0.1327 0.1743

u1 ∼ t(3)
u2 ∼ t(3) true APEy2 = 0.161

N = 10000

BIAS 0.0056 0.0063 -0.0026 -0.0008 -0.0024 0.1387

RMSE 0.0143 0.0138 0.0116 0.0285 0.0332 0.1389

N = 5000

BIAS 0.0056 0.0062 -0.0028 -0.0018 -0.0027 0.1380

RMSE 0.0199 0.0189 0.0171 0.0454 0.0465 0.1384

N = 1000

BIAS 0.0064 0.0079 -0.0023 -0.0018 -0.0054 0.1383

RMSE 0.0430 0.0407 0.0372 0.0612 0.0769 0.1401

N = 500

BIAS 0.0034 0.0042 -0.0054 -0.0068 -0.0077 0.1370

RMSE 0.0595 0.0560 0.0525 0.0822 0.0951 0.1407

N = 250

BIAS 0.0000 0.0016 -0.0082 -0.0100 -0.0156 0.1380

RMSE 0.0831 0.0786 0.0761 0.1088 0.1317 0.1460

Scenario characteristics: Cθ = Gaussian, corr(u1, u2) = 0.6, SD(v) = 2.0, F [δz21 ] ≥ 100.00; The BIAS is de�ned

as the average di�erence between the estimated and the true APE. RMSE is the root mean squared error. Detailed

statistics can be found in Table A6. A visual overview of the empirical distributions of the di�erent estimates is

given by Figure A6.

When the error terms follow a F-distribution which in contrast to the previously used marginal

CDFs has no symmetric character but is positively skewed, the performance pattern of the

estimators remains the same as in the baseline, i.e. the recursive bivariate probit estimator

exhibits the smallest RMSE but also the smallest bias.40 In terms of the latter measure, it is

followed by the 2SLS estimator while in terms of a small RMSE the GI2SLS estimator is at second

rank. Both non-linear semi-parametric estimators are dominated by the linear parametric ones

for both the bias and the RMSE with the exemption of the smallest sample size. In comparison to

the baseline setting, the absolute bias as well as the RMSE increases almost for each sample size

and estimator combination displayed in the columns one to �ve of Table 6. The best performing

estimator, i.e. the bivariate probit one, is biased by 3.2% and the RMSE is 20% larger than in

the baseline for the largest sample.

In the case of u1 and u2 being both logistically distributed with a scale of 0.9, i.e. the

marginal distributions of the error terms exhibit a relatively larger spread with relatively larger

tails in comparison to a normal distribution, the performance of the estimators in terms of a

low RMSE remains exactly the same as in the previous scenario or the baseline setting. For all

sample sizes the non-linear parametric estimator dominates the linear parametric ones which in

40It should be noted that the correlation of both errors has to be slightly reduced to a value of 0.48 in order to use
this type of marginal distribution for the error terms while parallelly maintaining the large support requirement
of the special regressor.
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turn dominate the non-linear semi-parametric ones. In comparison to the baseline, the RMSE

relatively increases for all estimators but in particular for the recursive bivariate probit estimator

which is meaningful since the assumptions made by this parametric estimator are not (fully) met

anymore. With respect to the bias, there does not exists a clear pattern since the ones of the

estimators displayed in the �rst three columns exhibit a bouncing behavior. On the opposite, the

special regressor estimators are again always downwards biased but the bias shrinks consistently

with an increase in sample size.

In the last panel of Table 6 the results of simulations where the marginal CDFs of u1 and u2

have been altered from normal to t-distributions (with three degrees of freedom) are displayed.41

Also in this scenario where the error term distributions exhibit a relatively more dense distri-

bution but which is still relatively comparable to the baseline one, the recursive bivariate probit

estimator is the best performing in terms of a low RMSE. Moreover, the pattern of the estima-

tors in terms of a small RMSE does not change in comparison to the baseline, and the relative

increase in the RMSE amounts on average to a value of 42.1% for all sample size estimator

combinations which is mainly driven by both special regressor estimators. In terms of the bias,

the linear as well as the non-linear parametric estimators are prone to bouncing behavior while

the special regressor estimators are again relatively downward biased but the bias shrinks with

the increase of the sample size.

In summary, Table 6 shows that even when assumptions on the marginal distributions of the

error terms raised by the fully parametric ML approach are not met, none of the other tested

estimators, like the semi-parametric ones, is able to deliver quantitatively better results of the

true APE. Similar to the case of the non-normality of the joint CDF of the error terms (cf. Table

5) the recursive bivariate probit estimator seems to be surprisingly robust to misspeci�cation of

the marginal CDFs of the error terms regarding the measure of the RMSE.42

6 Empirical Illustration

As an empirical illustration, we revisit the prominent study of Angrist and Evans (1998) where

a BRM with a dichotomous EEV is estimated by estimators suited for linear models. Angrist

and Evans study the determinants of labor supply for women with data from the US Census

1980. Among others, they explicitly model the binary decision of having worked for pay in the

time when the survey was conducted and investigate the e�ect of having more than two children

on this individual outcome. Since the parenthood measure is endogenous they use two di�erent

types of instruments in a 2SLS estimation ignoring the non-linearity of the dependent variable.

First, they use the information if the �rst two born children share the same sex to construct a

binary instrument. Second and alternatively, the authors use the similar but slightly di�erent

41As in the case when the error values are sampled from a F-distribution, the correlation between u1 and u2 is
slightly reduced to 0.54 in order to ful�ll the large support requirement of the special regressor.

42Han and Lee (2019) show in their recent study that given certain assumptions hold their proposed semi-
parametric estimator can outperform the classical recursive bivariate probit approach in the case when the marginal
distributions of the error terms are set by a mixture of two normal distributions.
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Table 7: Estimates of Labor Supply Models using 1980 Census data

All women Married women

(1) (2.1) (2.2) (2.3) (3.1) (3.2) (3.3) (4) (5.1) (5.2) (5.3) (6.1) (6.2) (6.3)

Estimation method OLS 2SLS BP SRK 2SLS BP SRK OLS 2SLS BP SRK 2SLS BP SRK
Instrument for

More than 2 children
� Same sex

Two boys,
Two girls

� Same sex
Two boys,
Two girls

Original sample
Dependent Variable:
Worked for pay -0.176 -0.117 -0.110 -0.167 -0.117 -0.109

(0.002) (0.025) (0.025) (0.002) (0.028) (0.028)

Observations 394840 394840 394840 254652 254652 254652

Reduced sample
Dependent Variable:
Worked for pay -0.170 -0.110 -0.228 -0.137 -0.101 -0.228 -0.140 -0.168 -0.144 -0.193 0.246 -0.137 -0.193 0.251

(0.004) (0.066) (0.053) (0.128) (0.066) (0.053) (0.123) (0.004) (0.058) (0.048) (0.099) (0.057) (0.048) (0.105)

Observations 65000 65000 65000 65000 65000 65000 65000 65000 65000 65000 65000 65000 65000 65000

BP = Recursive Bivariate Probit; SRK = Special Regressor Kernel Density
Note: The �rst panel, i.e. the original sample, is a replication of the �rst row of Table 7 of Angrist and Evans (1998). Numbers di�er from the published text
version but are consistent with the published log-�le. The second panel, i.e. the reduced sample, consists of a random selection of 65.000 observations each
for both original samples. For all estimations the displayed estimates are equivalent to the APE and the set of covariates consists of controls for individual
age, individual age at �rst birth and indicators for First-born boy, Second-born boy, Black, Hispanic and other race. For the special regressor estimations
the negative demeaned age of the women in the sample was taken as the special regressor. Standard errors of the estimated APEs of the special regressor

approach are obtained by bootstrapping with 49 bootstrap samples.

information if the two �rst born are two boys or two girls (cf. Angrist and Evans (1998, Table

7)). Both identi�cation strategies are applied on two di�erent samples, consisting of women with

(1) di�erent relationship statuses and (2) just married women.

Instead of using the full sample of 394.840 and 254.652 observations respectively, we shrink

the sample sizes to 65.000 randomly picked observations each due to computation issues for the

special regressor approach. However, the comparison of both panels of Table 7 - which reports

the original estimates and those for the randomly reduced sample size - shows that the di�erence

in the estimates is considerably small.43 Besides presenting the estimates of the original OLS as

well as 2SLS estimations, Table 7 also provides estimates from estimating the same model with

the recursive bivariate probit approach as well as the special regressor kernel density approach

for the reduced sample. For the latter estimation approach the negative demeaned age of the

women in the sample was taken as the special regressor.44

There are four main insights which can be concluded from Table 7. First, in the All women

sample the e�ect of having more than two children estimated by the recursive bivariate probit

approach is quite di�erent to the one of the 2SLS estimation approach for both instruments

estimations. While the linear parametric estimator suggests a negative e�ect of ten or eleven

percentage points respectively, the non-linear parametric estimator reveals an estimate of close

to minus twenty-three percentage points. For the Married women sample the di�erence between

those estimators is smaller, i.e. the estimates of the 2SLS estimations are ca. 25% smaller than

43To be more precise, the di�erence in the estimates for the All women sample amounts to 0.009 at maximum
for all di�erent estimators, while it is 0.028 at maximum for the Married women sample.

44The variable of individual age has been taken as special regressor in the majority of previous studies, for
instance Dong and Lewbel (2015).

29



the ones of the recursive bivariate probit approach.45

Second, the ML estimator always has the smallest standard error. However, the standard errors

of the 2SLS estimations are not much bigger. For the estimations of the All women sample the

APE estimated by the 2SLS estimator looses its signi�cance in comparison to the full sample.

However, this fact only partly points to the property of the recursive bivariate probit estimator

to be the most e�cient one given the considerable di�erence in the size of the coe�cients of both

estimators.

Third, for the sample of All women the special regresssor estimates shown in column (2.3) and

(3.3) suggest a negative e�ect of fourteen percentage points. This is in the middle of the estimates

of the other approaches. The fact that the special regressor estimator delivers relatively more

similar estimates to the 2SLS approach in comparison to the ML approach �ts to the simulation

results of Section 5. For the sample of Married women the special regressor approach suggests

a considerable positive e�ect of having at least three children. This is in contrast to the other

estimators which still reveal a negative e�ect of similar magnitude as they did before. That

might be explained by the relatively large spread of this estimator (cf. Section 5).

In total, this empirical illustration shows that when using real data the di�erent approaches

can deliver considerably di�erent estimates and thus that there is need for some guidance which

estimator should be used in which scenario as it has been done in the previous section. For the

key aspects like the relative size of the standard errors, this empirical illustration is in line with

�ndings of the simulations.

7 Conclusion

This paper has compared six di�erent estimators of the classes of linear parametric (2SLS,

GI2SLS), non-linear parametric (recursive bivariate probit) as well non-linear semi-parametric

approaches in order to estimate the e�ect of a binary EEV in a BRM. Regarding the last one, i.e.

the special regressor approach, it has also o�ered a guidance how the ASF can be used to estimate

APEs in such a setting. While in theory there are advantages as well as disadvantages for each of

the di�erent estimators, the practical review in terms of simulations shows the dominance of one

speci�c estimator. In particular with regards to e�ciency, the simulation study shows that in

all tested scenarios where the e�ect of the spread of the special regressor, the prevalence of weak

instruments, the degreee of endogeneity and the assumed joint as well as marginal distributions

of the error terms of the model has been investigated respectively, the ML estimator of the

recursive bivariate probit approach performs relatively best in comparison to two 2SLS as well

as two special regressor approaches. This �nding which is based on the comparison of APEs is

45To rule out that the considerable di�erence in the estimates of the 2SLS and the recursive bivariate probit
approach is driven by the process of the random sample reduction, we also estimated all sample speci�cation
combinations with the recursive bivariate probit approach for the original sample. For the All women sample the
point estimate di�ers only by 0.17 to those displayed in Table 7 while for the Married women sample it di�ers by
2.6.
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con�rmed by an empirical illustration of the e�ect of parenthood on the decision to supply labor.

Taking up the �ndings, this paper can be seen as a strong recommendation to primarily rely

on the ML estimator of the recursive bivariate probit approach in a setting of a binary dependent

as well as a binary endogenous variable. In particular since the estimation of non-linear models

has become relatively easy meanwhile in terms of the computational dimension, this method

should not be ignored any longer by the argument that linear models could deliver adequate

approximations. In fact, this study shows that the fully parametrized ML approach delivers

relatively better estimates in each tested scenario and outperforms the other estimators by its

approximations for the true APE even in settings where its assumptions are not ful�lled. In

the case that the ML estimator of the recursive bivariate probit approach is not an option, for

instance due to its iterative search on a globally �at likelihood function, the proposed alternative

2SLS estimator (GI2SLS) could be an attractive alternative in particular due to its reinforcing

character in terms of the instrument's strength.

Although this study does not provide any obvious support to promote the semi-parametric

special regressor approach, it would be questionable to disregard this method completely. In

fact, a closer look on the results of the special regressor approach yields an interesting insight.

Both types of the special regressor approach are able to deliver relatively better estimates of

the coe�cients of the structural equation in comparison their estimates of the APEs. This in

particular true when the errors of the equations describing the model are not marginal normally

distributed. In other words, these semi-parametric approaches lose in performance power when

the logistic series estimator is used to calculate the ASF for the estimation of APEs which can

be interpreted as re�ecting causal e�ects. This circumstance �ts to the observation which can be

retraced by the tabulated results in the appendix, that although the usage of the AIF (instead

of the ASF) leads to biased estimates in theory, it sometimes outperforms the ASF in practice

in terms of the property of relatively unbiased and e�cient estimates of the APEs. Moreover, it

always clearly outperforms the ASF in terms of computation time.

Future research could concentrate on three di�erent issues. First, a reliable test on the strength

of the instruments in non-linear models could push the usage of non-linear models forward when

endogeneity is present. At the moment, the insights from linear models serve as reference.

However, these benchmarks could be quite misleading since estimation assumptions on non-

linearity typically strengthen the prediction power on the endogenous regressor itself. Second,

research focusing on the improvement of linear models could explore to which extent the usage of

the alternative 2SLS estimator allows the usage of relatively weaker instruments. Third, research

on the improvement of semi-parametric or non-parametric estimation procedures could help to

close the performance gap of the special regressor approach to the other estimators and could

make its advantages, such as the possibility of an unlimited number of endogenous regressors,

more attractive in complex models.
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Appendix

Derivations:

Derivation 1

The following derivation is a modi�ed version of the one of Dong and Lewbel (2015).

Theorem 1. Assume y1 = 1[γy2 + z1β + v + u1], E(z2u1) = 0, and v = g(y2, z, w). Assume
supp(γy2 + z1β + u1) ⊆ supp(−v), E(v) = 0, g is di�erentiable and strictly monotonically
increasing in its last element, w ⊥ (y2, z, u1) and w is continuously distributed. Let f(w) be the
probability density function of w. Let M(v) be any mean zero distribution function on supp(v)
such thatM(v0) = 0 andM(v1) = 1 for some points v0 and v1 that are in the interior of supp(v).

De�ne t by

t =
y1 −M(v)

f(w)

∂g(y2, z, w)

∂w
(15)

Then t = γy2 + z1β + ũ1, where E(z2ũ1) = 0

Proof. De�ne y̆1 = γy2 +z1β+u1 and letM(v) = 1[v ≤ 0] for simplicity. Then by the de�nition
of the conditional expectation it follows:

E(t|y2, z, u1) =

∫
supp(w|y2,z,u1)

1[y̆1 + g(y2, z, w) ≥ 0]− 1[g(y2, z, w) ≥ 0]

f(w)

∗ ∂g(y2, z, w)

∂w
f(w|y2, z, u1) dw

=

∫
supp(w|y2,z,u1)

[
1[y̆1 + g(y2, z, w) ≥ 0]− 1[g(y2, z, w) ≥ 0]

] ∂g(y2, z, w)

∂w
dw

=

∫
supp(v|y2,z,u1)

[
1[y̆1 + v ≥ 0]− 1[v ≥ 0]

]
dv

The second equality follows from w ⊥ (y2, z, u1) or expressed di�erently as f(w) = f(w|y2, z, u1).
The third equality uses a change of variables from w to v.

If y̆1 ≥ 0, then

E(t|y2, z, u1) =

∫
supp(v|y2,z,u1)

1[−y̆1 ≤ v ≤ 0] dv =

∫ 0

−y̆1
1 dv = y̆1

and if y̆1 ≤ 0, then

E(t|y2, z, u1) =

∫
supp(v|y2,z,u1)

−1[0 ≤ v ≤ −y̆1] dv = −
∫ −y̆1

0
1 dv = y̆1

which both together proves that E(t|y2, z, u1) = γy2 + z1β + u1.

35



De�ning ũ1 = t− z1β − γy2, it follows

E[z2ũ1] = E[z2(t− z1β − γy2)] = E
[
E[z2(t− z1β − γy2)] | y2, z, u1

]
= E[z2(E(t|y2, z, u1)− z1β − γy2)] = E(z2u1) = 0

To show that the theorem holds for other choices of M(v), replace y1 −M(v) of Equation 15
with [y1 − 1(v ≥ 0)] + [1(v ≥ 0) −M(v)]. Then E(t|y2, z, u1) equals the sum of the term given
above and

∫
supp(w|y2,z,u1)[1(v ≥ 0) −M(v)] dv. Applying an integration by parts to this term

gives

[1(v ≥ 0)−M(v)]v|supp(v|y2,z,u1) −
∫
supp(v|y2,z,u1)

−∂M(v)

∂v
v dv

The �rst term of this expression is zero because M(v) is a distribution function that equals zero
and one strictly inside the support of v, and the second term is zero because M(v) is a mean
zero distribution function. So E(t|y2, z, u1) is unchanged by replacing 1[v ≥ 0] with M(v).

Derivation 2

The following derivation is a detailed version of the one of Lewbel et al. (2012).

Given estimates of the coe�cients of the structural equation ψ, the AIF approach suggests to
condition on the index of y1i, i.e. to use Equation 9 instead of E(y1i|xi).

Hence, an estimator is needed for this expression which is calledM in the following with m being
its derivative, i.e. M̂i = Ê(y1i|xiψ). Partial e�ects can then be estimated analogous to Equation
7 by m̂γ.

Lewbel et al. (2012) propose to estimate a standard one-dimensional kernel regression of y1 on
xψ̂ to receive an estimate of M :

M̂i =

∑n
j=1 y1jK

( (xiψ̂)−(xjψ̂)
h

)
∑n

j=1K
( (xiψ̂)−(xjψ̂)

h

) for i = 1, . . . , n

where K is a standard one-dimensional kernel function and h denotes a bandwidth.46

The derivative m̂i = ∂M̂i

∂(xiψ̂)
can be derived by applying a combination of the quotient and chain

rule:

m̂i =
∂M̂i

∂(xiψ̂)
=

∑n
j=1 y1jK

′( (xiψ̂)−(xjψ̂)
h

)
∗ 1
h ∗
∑n

j=1K
( (xiψ̂)−(xjψ̂)

h

)[∑n
j=1K

( (xiψ̂)−(xjψ̂)
h

)]2 −

∑n
j=1 y1jK

( (xiψ̂)−(xjψ̂)
h

)
∗
∑n

j=1K
′( (xiψ̂)−(xjψ̂)

h

)
∗ 1
h[∑n

j=1K
( (xiψ̂)−(xjψ̂)

h

)]2

46M̂i equals the propensity score used in the Klein and Spady (1993) estimator.
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De�ne for ease of notation ω =
∑n

j=1K(·) in the following which is constant. By rearranging
the expression from above on gets

=
1
h

∑n
j=1 y1jK

′( (xiψ̂)−(xjψ̂)
h

)
ω

−
1
h

∑n
j=1

Y1j K
(

(xiψ̂)−(xj ψ̂)

h

)
ω ∗

∑n
j=1K

′( (xiψ̂)−(xjψ̂)
h

)
ω

=
1
h

∑n
j=1 y1jK

′( (xiψ̂)−(xjψ̂)
h

)
ω

−
1
hM̂ ∗

∑n
j=1K

′( (xiψ̂)−(xjψ̂)
h

)
ω

where M̂ is also constant. Thus, by plugging in ω back again and rearranging the whole expression
is equal to:

m̂i =
∂M̂i

∂(xiψ̂)
=

1
h

∑n
j=1(y1j − M̂j)K

′( (xiψ̂)−(xjψ̂)
h

)
∑n

j=1K
( (xiψ̂)−(xjψ̂)

h

)
which multiplied by the respective coe�cient of x ∈ x gives the partial e�ect of x for individual
i.
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Figures:

Distribution of APEs

Figure A1: Baseline
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Figure A2: Di�erent Support for Special Regressor

(a) SD(v) = 1.385 ≈ SD(y1 − v) = 1.382
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(b) SD(v) = 0.5 < SD(y1 − v) = 1.38
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(c) SD(v) = 5� SD(y1 − v) = 1.413
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Figure A3: Weak Instruments

(a) F [δz21 = 0] ≈ 5
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(b) F [δz21 = 0] ≈ 10
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(c) F [δz21 = 0] ≈ 20
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Figure A4: Di�erent degree of endogeneity

(a) corr(u1,u2) = 0.1
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(b) corr(u1,u2) = 0.9
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Figure A5: Di�erent joint CDF

(a) FU1,U2(u1, u2) constructed by Clayton Copula CCθ
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(b) FU1,U2(u1, u2) constructed by Frank Copula CFθ
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(c) FU1,U2(u1, u2) constructed by Gumbel Copula CGθ
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(d) FU1,U2(u1, u2) constructed by t Copula Ctθ
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Figure A6: Di�erent marginal CDF

(a) u1 ∼ F (10, 6), u2 ∼ F (10, 6)
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(b) u1 ∼ log(10, 6), u2 ∼ log(10, 6)
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(c) u1 ∼ t(3), u2 ∼ t(3)
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Visualization of (joint) CDF(s)

Figure A7: (Joint) CDF(s) of a Normal Copula

(a) Scatter plot
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Figure A8: (Joint) CDF(s) of a Clayton Copula

(a) Scatter plot
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Figure A9: (Joint) CDF(s) of a Frank Copula

(a) Scatter plot
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Figure A10: (Joint) CDF(s) of a Gumbel Copula

(a) Scatter plot
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Figure A11: (Joint) CDF(s) of a t Copula

(a) Scatter plot
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Tables:

Table A1: Simulation Results for APE of y2 - Baseline (All statistics)

Baseline true APEy2 = 0.173

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1729 -0.0001 0.0069 0.0066 0.1684 0.1733 0.1777 - 50-50
2SLS 0.1753 0.0023 0.0117 0.0117 0.1675 0.1752 0.1833 - 43-57
Generated Instr. 2SLS 0.1758 0.0028 0.0108 0.0109 0.1687 0.1757 0.1833 - 40-60
Recursive Biprobit 0.1729 -0.0001 0.0093 0.0091 0.1665 0.1729 0.1792 - 51-49
Special Reg. KeDe AIF 0.1708 -0.0022 0.0129 0.0129 0.1625 0.1710 0.1799 - 57-43
Special Reg. SoDa AIF 0.1697 -0.0034 0.0159 0.0161 0.1590 0.1695 0.1802 - 58-42
Special Reg. KeDe ASF 0.1703 -0.0027 0.0129 0.0130 0.1620 0.1705 0.1794 - 58-42
Special Reg. SoDa ASF 0.1691 -0.0039 0.0160 0.0163 0.1583 0.1691 0.1796 - 59-41
Probit 0.2665 0.0934 0.0068 0.0936 0.2620 0.2666 0.2710 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1731 0.0000 0.0097 0.0095 0.1670 0.1733 0.1794 - 50-50
2SLS 0.1757 0.0026 0.0165 0.0165 0.1648 0.1762 0.1866 - 43-57
Generated Instr. 2SLS 0.1760 0.0029 0.0151 0.0152 0.1663 0.1763 0.1858 - 41-59
Recursive Biprobit 0.1736 0.0005 0.0133 0.0131 0.1647 0.1743 0.1825 - 47-53
Special Reg. KeDe AIF 0.1716 -0.0015 0.0182 0.0181 0.1592 0.1716 0.1842 - 52-48
Special Reg. SoDa AIF 0.1700 -0.0031 0.0226 0.0227 0.1545 0.1703 0.1863 - 55-45
Special Reg. KeDe ASF 0.1715 -0.0016 0.0183 0.0182 0.1591 0.1714 0.1842 - 53-47
Special Reg. SoDa ASF 0.1698 -0.0033 0.0227 0.0229 0.1542 0.1700 0.1860 - 55-45
Probit 0.2664 0.0933 0.0096 0.0938 0.2600 0.2665 0.2727 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1739 0.0009 0.0218 0.0214 0.1596 0.1739 0.1886 - 48-52
2SLS 0.1770 0.0040 0.0370 0.0368 0.1522 0.1782 0.2015 - 44-56
Generated Instr. 2SLS 0.1785 0.0055 0.0344 0.0343 0.1569 0.1795 0.2026 - 41-59
Recursive Biprobit 0.1746 0.0016 0.0296 0.0292 0.1545 0.1757 0.1947 - 47-53
Special Reg. KeDe AIF 0.1700 -0.0030 0.0414 0.0413 0.1440 0.1709 0.1991 - 52-48
Special Reg. SoDa AIF 0.1662 -0.0069 0.0507 0.0508 0.1328 0.1676 0.2016 - 55-45
Special Reg. KeDe ASF 0.1718 -0.0013 0.0421 0.0419 0.1447 0.1721 0.2007 - 51-49
Special Reg. SoDa ASF 0.1679 -0.0051 0.0514 0.0513 0.1339 0.1695 0.2035 - 53-47
Probit 0.2667 0.0937 0.0212 0.0959 0.2526 0.2666 0.2807 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1727 -0.0005 0.0314 0.0306 0.1515 0.1728 0.1931 - 51-49
2SLS 0.1742 0.0009 0.0513 0.0507 0.1405 0.1752 0.2071 - 49-51
Generated Instr. 2SLS 0.1751 0.0018 0.0482 0.0475 0.1421 0.1752 0.2046 - 49-51
Recursive Biprobit 0.1720 -0.0013 0.0418 0.0414 0.1411 0.1718 0.2000 - 52-48
Special Reg. KeDe AIF 0.1671 -0.0062 0.0572 0.0572 0.1279 0.1686 0.2085 - 52-48
Special Reg. SoDa AIF 0.1629 -0.0104 0.0697 0.0702 0.1142 0.1657 0.2117 - 54-46
Special Reg. KeDe ASF 0.1706 -0.0027 0.0585 0.0582 0.1309 0.1722 0.2134 - 50-50
Special Reg. SoDa ASF 0.1665 -0.0068 0.0716 0.0716 0.1157 0.1688 0.2172 - 53-47
Probit 0.2663 0.0930 0.0306 0.0975 0.2442 0.2672 0.2876 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1727 -0.0005 0.0433 0.0425 0.1434 0.1725 0.2015 - 51-49
2SLS 0.1709 -0.0024 0.0724 0.0718 0.1216 0.1712 0.2194 - 51-49
Generated Instr. 2SLS 0.1734 0.0002 0.0667 0.0658 0.1285 0.1764 0.2178 - 48-52
Recursive Biprobit 0.1685 -0.0047 0.0596 0.0591 0.1260 0.1706 0.2061 - 51-49
Special Reg. KeDe AIF 0.1608 -0.0124 0.0798 0.0806 0.1067 0.1603 0.2169 - 56-44
Special Reg. SoDa AIF 0.1546 -0.0187 0.0928 0.0946 0.0956 0.1532 0.2215 - 59-41
Special Reg. KeDe ASF 0.1663 -0.0070 0.0824 0.0825 0.1108 0.1635 0.2245 - 54-46
Special Reg. SoDa ASF 0.1603 -0.0129 0.0973 0.0981 0.1002 0.1578 0.2273 - 56-44
Probit 0.2659 0.0927 0.0433 0.1016 0.2365 0.2658 0.2958 ** 1-99

"Re�ecting endogeneity" plugs u2 as additional covariate in the structural equation.
BIAS = average di�erence between the estimated and the true APE; SD = standard deviation; RMSE = root mean squared error; LQ = lower

quartile; UP = upper quartile; Di�test = signi�cance of the t-test of H0 : E[ÂPE] = E[APEtrue] with - : p ≤ 0.1 , * : p < 0.1 , ** : p < 0.05,
*** : p < 0.01, Biasratio describes the ratio of positive vs. negative bias

Scenario characteristics: u1 ∼ Normal(0, 1), u2 ∼ Normal(0, 1), Cθ = Gaussian, corr(u1, u2) = 0.6, SD(v) = 2.0, F [δz21 ] ≥ 100.00
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Table A2: Simulation Results for APE of y2 - Di�erent Support for Special Regressor (All statistics)

SD(v) < SD(y1 − v) true APEy2 = 0.215

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.2146 -0.0003 0.0073 0.0072 0.2099 0.2149 0.2195 - 51-49
2SLS 0.2215 0.0066 0.0118 0.0134 0.2136 0.2218 0.2296 - 28-72
Generated Instr. 2SLS 0.2224 0.0075 0.0109 0.0131 0.2150 0.2225 0.2299 - 24-76
Recursive Biprobit 0.2145 -0.0004 0.0101 0.0099 0.2076 0.2145 0.2213 - 51-49
Special Reg. KeDe AIF 0.2092 -0.0057 0.0157 0.0166 0.1995 0.2093 0.2190 - 65-35
Special Reg. SoDa AIF 0.2086 -0.0063 0.0210 0.0218 0.1964 0.2085 0.2215 - 63-37
Special Reg. KeDe ASF 0.2059 -0.0090 0.0157 0.0180 0.1962 0.2059 0.2157 - 73-27
Special Reg. SoDa ASF 0.2054 -0.0095 0.0210 0.0230 0.1929 0.2052 0.2178 - 70-30
Probit 0.3320 0.1171 0.0073 0.1173 0.3272 0.3320 0.3370 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.2149 -0.0000 0.0108 0.0106 0.2075 0.2149 0.2219 - 50-50
2SLS 0.2223 0.0074 0.0171 0.0186 0.2110 0.2224 0.2337 - 33-67
Generated Instr. 2SLS 0.2230 0.0081 0.0161 0.0178 0.2126 0.2228 0.2334 - 29-71
Recursive Biprobit 0.2155 0.0005 0.0149 0.0147 0.2060 0.2157 0.2251 - 47-53
Special Reg. KeDe AIF 0.2101 -0.0048 0.0205 0.0210 0.1967 0.2097 0.2249 - 60-40
Special Reg. SoDa AIF 0.2086 -0.0064 0.0262 0.0269 0.1903 0.2095 0.2245 - 58-42
Special Reg. KeDe ASF 0.2074 -0.0075 0.0206 0.0218 0.1944 0.2068 0.2215 - 65-35
Special Reg. SoDa ASF 0.2058 -0.0091 0.0263 0.0277 0.1878 0.2066 0.2219 - 63-37
Probit 0.3318 0.1169 0.0106 0.1173 0.3248 0.3315 0.3386 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.2155 0.0006 0.0241 0.0238 0.1989 0.2159 0.2321 - 49-51
2SLS 0.2234 0.0085 0.0391 0.0397 0.1968 0.2239 0.2512 - 40-60
Generated Instr. 2SLS 0.2252 0.0102 0.0368 0.0378 0.2017 0.2256 0.2511 - 38-62
Recursive Biprobit 0.2163 0.0014 0.0334 0.0331 0.1941 0.2165 0.2392 - 48-52
Special Reg. KeDe AIF 0.2067 -0.0082 0.0444 0.0450 0.1777 0.2085 0.2364 - 56-44
Special Reg. SoDa AIF 0.2038 -0.0112 0.0549 0.0560 0.1697 0.2063 0.2412 - 57-43
Special Reg. KeDe ASF 0.2061 -0.0088 0.0448 0.0456 0.1767 0.2075 0.2355 - 57-43
Special Reg. SoDa ASF 0.2037 -0.0113 0.0559 0.0570 0.1685 0.2044 0.2401 - 58-42
Probit 0.3319 0.1169 0.0235 0.1191 0.3164 0.3330 0.3479 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.2155 0.0003 0.0349 0.0342 0.1911 0.2164 0.2389 - 49-51
2SLS 0.2222 0.0070 0.0547 0.0545 0.1837 0.2209 0.2611 - 45-55
Generated Instr. 2SLS 0.2234 0.0083 0.0512 0.0512 0.1876 0.2242 0.2583 - 43-57
Recursive Biprobit 0.2151 -0.0001 0.0474 0.0469 0.1820 0.2146 0.2468 - 51-49
Special Reg. KeDe AIF 0.2039 -0.0113 0.0623 0.0630 0.1615 0.2066 0.2489 - 55-45
Special Reg. SoDa AIF 0.1974 -0.0178 0.0790 0.0807 0.1456 0.1988 0.2545 - 57-43
Special Reg. KeDe ASF 0.2061 -0.0091 0.0633 0.0637 0.1628 0.2077 0.2522 - 54-46
Special Reg. SoDa ASF 0.2000 -0.0151 0.0807 0.0819 0.1467 0.2019 0.2584 - 56-44
Probit 0.3320 0.1169 0.0341 0.1214 0.3085 0.3327 0.3571 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.2173 0.0020 0.0486 0.0477 0.1838 0.2139 0.2505 - 50-50
2SLS 0.2204 0.0052 0.0761 0.0756 0.1682 0.2190 0.2727 - 48-52
Generated Instr. 2SLS 0.2219 0.0066 0.0712 0.0705 0.1748 0.2204 0.2727 - 46-54
Recursive Biprobit 0.2116 -0.0037 0.0669 0.0661 0.1686 0.2117 0.2566 - 51-49
Special Reg. KeDe AIF 0.1964 -0.0188 0.0871 0.0887 0.1413 0.2006 0.2542 - 56-43
Special Reg. SoDa AIF 0.1928 -0.0225 0.1024 0.1044 0.1271 0.2000 0.2662 - 56-44
Special Reg. KeDe ASF 0.2024 -0.0128 0.0927 0.0931 0.1451 0.2049 0.2631 - 54-46
Special Reg. SoDa ASF 0.1994 -0.0159 0.1098 0.1104 0.1275 0.2057 0.2751 - 53-47
Probit 0.3330 0.1177 0.0479 0.1265 0.2988 0.3322 0.3637 ** 100

SD(v) < SD(y1 − v) true APEy2 = 0.285

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.2844 -0.0002 0.0089 0.0088 0.2787 0.2847 0.2905 - 50-50
2SLS 0.3068 0.0222 0.0136 0.0260 0.2980 0.3067 0.3160 - 5-95
Generated Instr. 2SLS 0.3094 0.0248 0.0128 0.0279 0.3009 0.3097 0.3186 * 3-97
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Recursive Biprobit 0.2844 -0.0002 0.0125 0.0125 0.2762 0.2846 0.2925 - 51-49
Special Reg. KeDe AIF 0.2721 -0.0125 0.0622 0.0634 0.2452 0.2754 0.3060 - 59-41
Special Reg. SoDa AIF 0.2736 -0.0110 0.0644 0.0654 0.2425 0.2762 0.3108 - 56-44
Special Reg. KeDe ASF 0.2327 -0.0520 0.0635 0.0820 0.1989 0.2258 0.2644 - 84-16
Special Reg. SoDa ASF 0.2357 -0.0489 0.0661 0.0822 0.1998 0.2296 0.2695 - 81-19
Probit 0.4435 0.1588 0.0086 0.1591 0.4375 0.4437 0.4496 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.2852 0.0005 0.0126 0.0125 0.2769 0.2849 0.2943 - 49-51
2SLS 0.3076 0.0230 0.0188 0.0297 0.2955 0.3071 0.3199 - 10-90
Generated Instr. 2SLS 0.3102 0.0256 0.0175 0.0310 0.2990 0.3094 0.3215 - 7-93
Recursive Biprobit 0.2853 0.0007 0.0171 0.0170 0.2738 0.2844 0.2964 - 51-49
Special Reg. KeDe AIF 0.2674 -0.0172 0.0711 0.0731 0.2379 0.2729 0.3072 - 59-41
Special Reg. SoDa AIF 0.2682 -0.0164 0.0701 0.0720 0.2335 0.2734 0.3125 - 58-42
Special Reg. KeDe ASF 0.2245 -0.0601 0.0673 0.0902 0.1897 0.2224 0.2587 - 85-15
Special Reg. SoDa ASF 0.2282 -0.0564 0.0709 0.0907 0.1874 0.2257 0.2685 - 81-19
Probit 0.4436 0.1590 0.0118 0.1594 0.4359 0.4439 0.4518 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.2846 -0.0000 0.0276 0.0276 0.2653 0.2849 0.3023 - 50-50
2SLS 0.3069 0.0223 0.0416 0.0472 0.2788 0.3077 0.3359 - 29-71
Generated Instr. 2SLS 0.3100 0.0253 0.0388 0.0463 0.2835 0.3097 0.3360 - 26-74
Recursive Biprobit 0.2851 0.0004 0.0381 0.0380 0.2590 0.2858 0.3108 - 49-51
Special Reg. KeDe AIF 0.2620 -0.0227 0.0853 0.0883 0.2149 0.2698 0.3142 - 59-41
Special Reg. SoDa AIF 0.2591 -0.0255 0.0949 0.0983 0.2086 0.2664 0.3216 - 57-43
Special Reg. KeDe ASF 0.2201 -0.0646 0.0836 0.1057 0.1711 0.2159 0.2680 - 82-18
Special Reg. SoDa ASF 0.2197 -0.0649 0.0926 0.1130 0.1636 0.2167 0.2760 - 77-23
Probit 0.4430 0.1583 0.0267 0.1605 0.4268 0.4429 0.4591 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.2840 -0.0008 0.0406 0.0402 0.2547 0.2835 0.3099 - 51-49
2SLS 0.3070 0.0222 0.0597 0.0634 0.2648 0.3068 0.3457 - 35-65
Generated Instr. 2SLS 0.3097 0.0249 0.0559 0.0609 0.2706 0.3095 0.3458 - 33-67
Recursive Biprobit 0.2827 -0.0021 0.0555 0.0552 0.2434 0.2823 0.3194 - 52-48
Special Reg. KeDe AIF 0.2429 -0.0419 0.1008 0.1091 0.1936 0.2499 0.3062 - 65-35
Special Reg. SoDa AIF 0.2402 -0.0446 0.1088 0.1174 0.1771 0.2522 0.3178 - 62-38
Special Reg. KeDe ASF 0.2021 -0.0827 0.0971 0.1275 0.1487 0.2017 0.2508 - 83-17
Special Reg. SoDa ASF 0.2005 -0.0843 0.1054 0.1348 0.1377 0.2001 0.2657 - 81-19
Probit 0.4422 0.1574 0.0385 0.1619 0.4160 0.4434 0.4690 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.2853 0.0005 0.0586 0.0580 0.2444 0.2862 0.3247 - 49-51
2SLS 0.3060 0.0212 0.0826 0.0849 0.2540 0.3075 0.3607 - 39-61
Generated Instr. 2SLS 0.3095 0.0247 0.0781 0.0814 0.2574 0.3101 0.3620 - 36-64
Recursive Biprobit 0.2804 -0.0043 0.0790 0.0786 0.2301 0.2809 0.3312 - 52-48
Special Reg. KeDe AIF 0.2350 -0.0498 0.1141 0.1243 0.1619 0.2460 0.3147 - 64-36
Special Reg. SoDa AIF 0.2295 -0.0553 0.1217 0.1334 0.1502 0.2452 0.3149 - 64-36
Special Reg. KeDe ASF 0.1938 -0.0910 0.1099 0.1426 0.1284 0.1915 0.2666 - 80-20
Special Reg. SoDa ASF 0.1937 -0.0911 0.1187 0.1494 0.1179 0.1961 0.2747 - 79-21
Probit 0.4434 0.1586 0.0543 0.1674 0.4077 0.4446 0.4810 *** 100

SD(v)� SD(y1 − v) true APEy2 = 0.081

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.0810 -0.0000 0.0047 0.0045 0.0777 0.0811 0.0841 - 50-50
2SLS 0.0811 0.0001 0.0106 0.0104 0.0743 0.0807 0.0881 - 50-50
Generated Instr. 2SLS 0.0812 0.0002 0.0098 0.0097 0.0748 0.0809 0.0878 - 50-50
Recursive Biprobit 0.0809 -0.0001 0.0064 0.0062 0.0765 0.0811 0.0852 - 50-50
Special Reg. KeDe AIF 0.0821 0.0011 0.0104 0.0102 0.0755 0.0826 0.0893 - 44-56
Special Reg. SoDa AIF 0.0817 0.0006 0.0125 0.0124 0.0731 0.0819 0.0903 - 47-53
Special Reg. KeDe ASF 0.0824 0.0014 0.0104 0.0103 0.0757 0.0829 0.0896 - 43-57
Special Reg. SoDa ASF 0.0819 0.0009 0.0126 0.0124 0.0732 0.0822 0.0904 - 46-54
Probit 0.1242 0.0431 0.0048 0.0434 0.1207 0.1243 0.1274 *** 100

N = 5000
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Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.0809 -0.0002 0.0069 0.0066 0.0762 0.0809 0.0855 - 51-49
2SLS 0.0809 -0.0002 0.0154 0.0153 0.0704 0.0808 0.0913 - 51-49
Generated Instr. 2SLS 0.0810 -0.0000 0.0140 0.0138 0.0712 0.0809 0.0910 - 51-49
Recursive Biprobit 0.0811 0.0001 0.0089 0.0087 0.0750 0.0810 0.0875 - 50-50
Special Reg. KeDe AIF 0.0826 0.0015 0.0147 0.0145 0.0721 0.0830 0.0925 - 46-54
Special Reg. SoDa AIF 0.0817 0.0007 0.0175 0.0173 0.0699 0.0815 0.0937 - 48-52
Special Reg. KeDe ASF 0.0830 0.0019 0.0148 0.0146 0.0723 0.0833 0.0928 - 45-55
Special Reg. SoDa ASF 0.0821 0.0011 0.0176 0.0174 0.0702 0.0819 0.0941 - 47-53
Probit 0.1241 0.0430 0.0069 0.0435 0.1193 0.1240 0.1287 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.0810 0.0000 0.0151 0.0146 0.0709 0.0815 0.0903 - 51-49
2SLS 0.0825 0.0015 0.0341 0.0338 0.0590 0.0830 0.1055 - 47-53
Generated Instr. 2SLS 0.0822 0.0012 0.0310 0.0307 0.0611 0.0825 0.1034 - 48-52
Recursive Biprobit 0.0805 -0.0005 0.0202 0.0198 0.0674 0.0804 0.0931 - 51-49
Special Reg. KeDe AIF 0.0825 0.0015 0.0323 0.0318 0.0606 0.0823 0.1039 - 49-51
Special Reg. SoDa AIF 0.0801 -0.0009 0.0400 0.0396 0.0521 0.0773 0.1081 - 53-47
Special Reg. KeDe ASF 0.0837 0.0027 0.0330 0.0325 0.0616 0.0838 0.1051 - 47-53
Special Reg. SoDa ASF 0.0812 0.0002 0.0406 0.0402 0.0532 0.0783 0.1086 - 51-49
Probit 0.1241 0.0431 0.0151 0.0453 0.1146 0.1241 0.1339 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.0805 -0.0006 0.0223 0.0214 0.0649 0.0801 0.0958 - 51-49
2SLS 0.0796 -0.0015 0.0482 0.0478 0.0478 0.0775 0.1133 - 52-48
Generated Instr. 2SLS 0.0792 -0.0019 0.0445 0.0441 0.0487 0.0778 0.1093 - 53-47
Recursive Biprobit 0.0800 -0.0011 0.0298 0.0291 0.0610 0.0802 0.0989 - 51-49
Special Reg. KeDe AIF 0.0813 0.0002 0.0457 0.0448 0.0503 0.0805 0.1119 - 50-50
Special Reg. SoDa AIF 0.0799 -0.0012 0.0551 0.0543 0.0417 0.0782 0.1183 - 52-48
Special Reg. KeDe ASF 0.0831 0.0020 0.0470 0.0461 0.0516 0.0821 0.1149 - 48-52
Special Reg. SoDa ASF 0.0816 0.0005 0.0566 0.0558 0.0424 0.0806 0.1198 - 51-49
Probit 0.1243 0.0432 0.0222 0.0478 0.1095 0.1243 0.1386 * 1-99

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.0805 -0.0005 0.0298 0.0288 0.0595 0.0810 0.1007 - 49-51
2SLS 0.0782 -0.0028 0.0653 0.0646 0.0346 0.0774 0.1223 - 53-47
Generated Instr. 2SLS 0.0791 -0.0019 0.0605 0.0598 0.0358 0.0790 0.1205 - 52-48
Recursive Biprobit 0.0794 -0.0016 0.0395 0.0390 0.0529 0.0784 0.1057 - 52-48
Special Reg. KeDe AIF 0.0766 -0.0044 0.0644 0.0639 0.0339 0.0772 0.1200 - 52-48
Special Reg. SoDa AIF 0.0728 -0.0082 0.0739 0.0739 0.0231 0.0691 0.1242 - 56-44
Special Reg. KeDe ASF 0.0805 -0.0005 0.0730 0.0724 0.0358 0.0778 0.1231 - 50-50
Special Reg. SoDa ASF 0.0760 -0.0050 0.0790 0.0788 0.0250 0.0717 0.1293 - 55-45
Probit 0.1232 0.0422 0.0292 0.0502 0.1034 0.1226 0.1434 - 7-93

"Re�ecting endogeneity" plugs u2 as additional covariate in the strucutural equation.
BIAS = average di�erence between the estimated and the true APE; SD = standard deviation; RMSE = root mean squared error; LQ = lower

quartile; UP = upper quartile; Di�test = signi�cance of the t-test of H0 : E[ÂPE] = E[APEtrue] with - : p ≤ 0.1 , * : p < 0.1 , ** : p < 0.05,
*** : p < 0.01, Biasratio describes the ratio of positive vs. negative bias

Scenario characteristics: u1 ∼ Normal(0, 1), u2 ∼ Normal(0, 1), Cθ = Gaussian, corr(u1, u2) = 0.6, F [δz21 ] ≥ 100.00
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Table A3: Simulation Results for APE of y2 - Weak instrument setting (All statistics)

F [δz21 = 0] ≈ 5 true APEy2 = 0.173

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1733 0.0003 0.0096 0.0094 0.1673 0.1735 0.1797 - 48-52
2SLS 0.3716 0.1985 5.6715 5.6721 -0.1119 0.1870 0.4434 - 48-52
Generated Instr. 2SLS 0.1820 0.0090 0.0774 0.0778 0.1311 0.1823 0.2363 - 45-55
Recursive Biprobit 0.1782 0.0051 0.0386 0.0389 0.1512 0.1746 0.2014 - 49-51
Special Reg. KeDe AIF 0.1634 -0.0096 0.2768 0.2767 -0.1095 0.1693 0.4255 - 51-49
Special Reg. SoDa AIF 0.1614 -0.0117 0.2981 0.2981 -0.1432 0.1577 0.4584 - 51-49
Special Reg. KeDe ASF 0.1224 -0.0506 0.3578 0.3611 -0.1565 0.1675 0.4434 - 51-49
Special Reg. SoDa ASF 0.1064 -0.0666 0.3944 0.3998 -0.2460 0.1547 0.4821 - 52-48
Probit 0.3455 0.1724 0.0068 0.1726 0.3409 0.3458 0.3500 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1734 0.0003 0.0140 0.0138 0.1639 0.1736 0.1829 - 49-51
2SLS -0.6011 -0.7742 15.6653 15.6767 -0.1019 0.1967 0.4422 - 48-52
Generated Instr. 2SLS 0.1835 0.0104 0.1074 0.1079 0.1161 0.1858 0.2530 - 44-56
Recursive Biprobit 0.1825 0.0094 0.0594 0.0601 0.1420 0.1744 0.2122 - 49-51
Special Reg. KeDe AIF 0.1674 -0.0057 0.2801 0.2800 -0.1113 0.1907 0.4321 - 49-51
Special Reg. SoDa AIF 0.1631 -0.0100 0.3015 0.3014 -0.1453 0.1472 0.4628 - 52-48
Special Reg. KeDe ASF 0.1260 -0.0471 0.3602 0.3630 -0.1707 0.1852 0.4453 - 49-51
Special Reg. SoDa ASF 0.1096 -0.0635 0.3961 0.4009 -0.2408 0.1430 0.4863 - 52-48
Probit 0.3453 0.1722 0.0100 0.1725 0.3387 0.3453 0.3521 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1728 -0.0002 0.0308 0.0305 0.1529 0.1732 0.1928 - 49-51
2SLS 0.1353 -0.0377 1.5655 1.5652 -0.0833 0.2145 0.4801 - 46-54
Generated Instr. 2SLS 0.1897 0.0166 0.2163 0.2166 0.0647 0.1907 0.3265 - 46-54
Recursive Biprobit 0.2051 0.0321 0.1252 0.1290 0.1172 0.1834 0.2705 - 47-53
Special Reg. KeDe AIF 0.1733 0.0003 0.2721 0.2720 -0.0810 0.1861 0.4258 - 49-51
Special Reg. SoDa AIF 0.1722 -0.0008 0.2941 0.2939 -0.1221 0.1829 0.4539 - 49-51
Special Reg. KeDe ASF 0.1380 -0.0351 0.3546 0.3562 -0.1191 0.1858 0.4476 - 49-51
Special Reg. SoDa ASF 0.1274 -0.0456 0.3880 0.3906 -0.2036 0.1812 0.4816 - 49-51
Probit 0.3441 0.1711 0.0216 0.1723 0.3288 0.3440 0.3593 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1741 0.0008 0.0453 0.0446 0.1444 0.1715 0.2046 - 52-48
2SLS 0.2933 0.1200 3.2981 3.2988 -0.0864 0.2044 0.4654 - 47-53
Generated Instr. 2SLS 0.1727 -0.0006 0.3552 0.3550 0.0159 0.2115 0.3529 - 45-55
Recursive Biprobit 0.2158 0.0425 0.1574 0.1629 0.0926 0.1976 0.3214 - 45-55
Special Reg. KeDe AIF 0.1810 0.0077 0.2641 0.2640 -0.0715 0.2081 0.4123 - 46-54
Special Reg. SoDa AIF 0.1748 0.0015 0.2841 0.2840 -0.1072 0.1779 0.4408 - 49-51
Special Reg. KeDe ASF 0.1448 -0.0285 0.3573 0.3583 -0.1118 0.2100 0.4352 - 47-53
Special Reg. SoDa ASF 0.1306 -0.0427 0.3881 0.3903 -0.1925 0.1765 0.4730 - 50-50
Probit 0.3442 0.1709 0.0325 0.1736 0.3211 0.3429 0.3647 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1721 -0.0011 0.0633 0.0626 0.1308 0.1703 0.2129 - 51-49
2SLS 0.1503 -0.0229 2.9459 2.9437 -0.1107 0.1668 0.4143 - 51-49
Generated Instr. 2SLS 0.1802 0.0070 0.5212 0.5209 0.0034 0.1947 0.3946 - 46-54
Recursive Biprobit 0.2169 0.0437 0.1846 0.1894 0.0652 0.1907 0.3547 - 47-53
Special Reg. KeDe AIF 0.1548 -0.0185 0.2730 0.2734 -0.1087 0.1606 0.4013 - 51-49
Special Reg. SoDa AIF 0.1626 -0.0106 0.2860 0.2862 -0.1153 0.1723 0.4252 - 50-50
Special Reg. KeDe ASF 0.1169 -0.0563 0.3657 0.3699 -0.1791 0.1597 0.4346 - 51-49
Special Reg. SoDa ASF 0.1133 -0.0599 0.3980 0.4025 -0.2422 0.1647 0.4669 - 51-49
Probit 0.3419 0.1686 0.0451 0.1740 0.3117 0.3411 0.3719 *** 100

F [δz21 = 0] ≈ 10 true APEy2 = 0.173

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1733 0.0002 0.0095 0.0094 0.1670 0.1734 0.1798 - 49-51
2SLS 0.1503 -0.0227 0.3521 0.3526 -0.0148 0.1788 0.3513 - 49-51
Generated Instr. 2SLS 0.1820 0.0090 0.0756 0.0760 0.1317 0.1820 0.2331 - 45-55
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Recursive Biprobit 0.1782 0.0051 0.0382 0.0384 0.1521 0.1743 0.2004 - 49-51
Special Reg. KeDe AIF 0.1510 -0.0221 0.2374 0.2382 -0.0613 0.1656 0.3585 - 51-49
Special Reg. SoDa AIF 0.1481 -0.0250 0.2655 0.2664 -0.1167 0.1566 0.3935 - 51-49
Special Reg. KeDe ASF 0.1379 -0.0352 0.2711 0.2731 -0.0627 0.1636 0.3612 - 52-48
Special Reg. SoDa ASF 0.1268 -0.0463 0.3109 0.3141 -0.1250 0.1550 0.4000 - 51-49
Probit 0.3454 0.1723 0.0068 0.1725 0.3408 0.3455 0.3498 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1733 0.0002 0.0140 0.0138 0.1637 0.1736 0.1830 - 49-51
2SLS 0.1233 -0.0498 0.9741 0.9749 -0.0167 0.1852 0.3501 - 48-52
Generated Instr. 2SLS 0.1829 0.0098 0.1026 0.1031 0.1167 0.1848 0.2527 - 45-55
Recursive Biprobit 0.1811 0.0080 0.0547 0.0552 0.1436 0.1752 0.2109 - 49-51
Special Reg. KeDe AIF 0.1607 -0.0124 0.2409 0.2411 -0.0594 0.1850 0.3707 - 48-52
Special Reg. SoDa AIF 0.1591 -0.0140 0.2687 0.2689 -0.0996 0.1766 0.4074 - 50-50
Special Reg. KeDe ASF 0.1503 -0.0228 0.2729 0.2737 -0.0608 0.1830 0.3757 - 48-52
Special Reg. SoDa ASF 0.1422 -0.0309 0.3104 0.3117 -0.1063 0.1760 0.4167 - 50-50
Probit 0.3451 0.1720 0.0100 0.1722 0.3385 0.3451 0.3518 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1727 -0.0004 0.0307 0.0304 0.1521 0.1737 0.1922 - 49-51
2SLS 0.1511 -0.0220 0.4343 0.4344 0.0005 0.1998 0.3590 - 46-54
Generated Instr. 2SLS 0.1867 0.0137 0.1885 0.1886 0.0721 0.1885 0.3070 - 47-53
Recursive Biprobit 0.1990 0.0259 0.1177 0.1202 0.1155 0.1814 0.2618 - 47-53
Special Reg. KeDe AIF 0.1591 -0.0139 0.2323 0.2326 -0.0297 0.1772 0.3578 - 49-51
Special Reg. SoDa AIF 0.1496 -0.0234 0.2623 0.2633 -0.1082 0.1579 0.3959 - 52-48
Special Reg. KeDe ASF 0.1446 -0.0284 0.2753 0.2766 -0.0339 0.1781 0.3640 - 49-51
Special Reg. SoDa ASF 0.1264 -0.0467 0.3185 0.3218 -0.1315 0.1585 0.4091 - 51-49
Probit 0.3432 0.1701 0.0215 0.1713 0.3281 0.3428 0.3589 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1734 0.0001 0.0451 0.0444 0.1419 0.1721 0.2056 - 50-50
2SLS 0.1693 -0.0039 0.6167 0.6164 -0.0069 0.1860 0.3619 - 48-52
Generated Instr. 2SLS 0.1740 0.0007 0.2485 0.2483 0.0369 0.1937 0.3155 - 47-53
Recursive Biprobit 0.2016 0.0283 0.1424 0.1450 0.0961 0.1876 0.2883 - 47-53
Special Reg. KeDe AIF 0.1629 -0.0104 0.2321 0.2321 -0.0302 0.1923 0.3611 - 47-53
Special Reg. SoDa AIF 0.1540 -0.0193 0.2590 0.2595 -0.0967 0.1639 0.3849 - 51-49
Special Reg. KeDe ASF 0.1506 -0.0227 0.2773 0.2779 -0.0374 0.1932 0.3718 - 47-53
Special Reg. SoDa ASF 0.1321 -0.0412 0.3168 0.3192 -0.1306 0.1679 0.4012 - 51-49
Probit 0.3423 0.1690 0.0324 0.1717 0.3206 0.3414 0.3640 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1726 -0.0006 0.0613 0.0605 0.1334 0.1686 0.2118 - 52-48
2SLS 0.1266 -0.0466 0.7145 0.7158 -0.0217 0.1543 0.3287 - 53-47
Generated Instr. 2SLS 0.1824 0.0092 0.2615 0.2611 0.0298 0.1804 0.3435 - 49-51
Recursive Biprobit 0.2031 0.0299 0.1691 0.1712 0.0767 0.1780 0.3206 - 49-51
Special Reg. KeDe AIF 0.1441 -0.0291 0.2322 0.2340 -0.0608 0.1636 0.3452 - 52-48
Special Reg. SoDa AIF 0.1475 -0.0258 0.2546 0.2558 -0.0764 0.1489 0.3742 - 52-48
Special Reg. KeDe ASF 0.1345 -0.0387 0.2770 0.2798 -0.0728 0.1658 0.3585 - 51-49
Special Reg. SoDa ASF 0.1309 -0.0423 0.3095 0.3122 -0.1017 0.1522 0.3946 - 52-48
Probit 0.3387 0.1655 0.0449 0.1708 0.3072 0.3371 0.3692 *** 100

F [δz21 = 0] ≈ 20 true APEy2 = 0.173

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1732 0.0001 0.0095 0.0094 0.1671 0.1731 0.1798 - 50-50
2SLS 0.1684 -0.0046 0.2043 0.2041 0.0529 0.1818 0.2974 - 48-52
Generated Instr. 2SLS 0.1820 0.0089 0.0726 0.0730 0.1359 0.1842 0.2298 - 44-56
Recursive Biprobit 0.1781 0.0050 0.0376 0.0379 0.1531 0.1746 0.1999 - 48-52
Special Reg. KeDe AIF 0.1561 -0.0169 0.1902 0.1908 0.0121 0.1680 0.3087 - 50-50
Special Reg. SoDa AIF 0.1591 -0.0139 0.2189 0.2192 -0.0127 0.1747 0.3427 - 50-50
Special Reg. KeDe ASF 0.1538 -0.0193 0.2012 0.2019 0.0122 0.1668 0.3087 - 51-49
Special Reg. SoDa ASF 0.1548 -0.0182 0.2366 0.2371 -0.0128 0.1736 0.3447 - 50-50
Probit 0.3452 0.1721 0.0068 0.1722 0.3408 0.3452 0.3497 *** 100

N = 5000
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Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1733 0.0002 0.0138 0.0136 0.1641 0.1736 0.1827 - 49-51
2SLS 0.1703 -0.0028 0.1975 0.1974 0.0544 0.1849 0.2970 - 47-53
Generated Instr. 2SLS 0.1819 0.0088 0.0946 0.0950 0.1226 0.1837 0.2446 - 45-55
Recursive Biprobit 0.1802 0.0071 0.0515 0.0519 0.1437 0.1742 0.2105 - 49-51
Special Reg. KeDe AIF 0.1619 -0.0112 0.1920 0.1921 0.0101 0.1880 0.3119 - 49-51
Special Reg. SoDa AIF 0.1551 -0.0180 0.2266 0.2272 -0.0291 0.1652 0.3498 - 51-49
Special Reg. KeDe ASF 0.1606 -0.0125 0.2023 0.2025 0.0102 0.1874 0.3129 - 49-51
Special Reg. SoDa ASF 0.1516 -0.0215 0.2439 0.2447 -0.0294 0.1645 0.3519 - 51-49
Probit 0.3448 0.1717 0.0099 0.1719 0.3380 0.3447 0.3513 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1727 -0.0003 0.0304 0.0300 0.1528 0.1730 0.1929 - 51-49
2SLS 0.1759 0.0029 0.2031 0.2027 0.0538 0.1926 0.3020 - 45-55
Generated Instr. 2SLS 0.1849 0.0119 0.1492 0.1493 0.0945 0.1872 0.2826 - 45-55
Recursive Biprobit 0.1889 0.0159 0.1019 0.1027 0.1210 0.1756 0.2427 - 48-52
Special Reg. KeDe AIF 0.1575 -0.0155 0.1869 0.1874 0.0246 0.1725 0.3038 - 51-49
Special Reg. SoDa AIF 0.1522 -0.0209 0.2160 0.2169 -0.0236 0.1595 0.3369 - 52-48
Special Reg. KeDe ASF 0.1558 -0.0173 0.2023 0.2028 0.0252 0.1733 0.3075 - 50-50
Special Reg. SoDa ASF 0.1480 -0.0250 0.2387 0.2399 -0.0244 0.1589 0.3435 - 52-48
Probit 0.3416 0.1685 0.0216 0.1697 0.3272 0.3413 0.3562 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1734 0.0001 0.0446 0.0439 0.1423 0.1727 0.2031 - 50-50
2SLS 0.1657 -0.0076 0.1978 0.1977 0.0406 0.1812 0.3001 - 49-51
Generated Instr. 2SLS 0.1728 -0.0005 0.1708 0.1706 0.0626 0.1856 0.2900 - 47-53
Recursive Biprobit 0.1847 0.0114 0.1190 0.1195 0.0991 0.1779 0.2610 - 48-52
Special Reg. KeDe AIF 0.1569 -0.0163 0.1893 0.1898 0.0187 0.1811 0.3061 - 49-51
Special Reg. SoDa AIF 0.1538 -0.0195 0.2180 0.2186 -0.0278 0.1795 0.3327 - 49-51
Special Reg. KeDe ASF 0.1574 -0.0159 0.2039 0.2043 0.0192 0.1855 0.3109 - 48-52
Special Reg. SoDa ASF 0.1512 -0.0221 0.2409 0.2416 -0.0293 0.1830 0.3462 - 49-51
Probit 0.3393 0.1660 0.0327 0.1688 0.3173 0.3385 0.3603 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1722 -0.0011 0.0584 0.0577 0.1345 0.1715 0.2114 - 51-49
2SLS 0.1605 -0.0127 0.1987 0.1988 0.0305 0.1590 0.2927 - 54-46
Generated Instr. 2SLS 0.1750 0.0017 0.1752 0.1747 0.0554 0.1750 0.2952 - 49-51
Recursive Biprobit 0.1829 0.0096 0.1387 0.1385 0.0811 0.1642 0.2714 - 52-48
Special Reg. KeDe AIF 0.1456 -0.0276 0.1857 0.1878 0.0004 0.1540 0.2917 - 54-46
Special Reg. SoDa AIF 0.1454 -0.0278 0.2071 0.2088 -0.0130 0.1507 0.3059 - 54-46
Special Reg. KeDe ASF 0.1477 -0.0256 0.2064 0.2081 -0.0006 0.1611 0.3036 - 52-48
Special Reg. SoDa ASF 0.1434 -0.0298 0.2374 0.2391 -0.0134 0.1547 0.3195 - 52-48
Probit 0.3325 0.1592 0.0445 0.1647 0.3020 0.3322 0.3631 *** 100

"Re�ecting endogeneity" plugs u2 as additional covariate in the structural equation.
BIAS = average di�erence between the estimated and the true APE; SD = standard deviation; RMSE = root mean squared error; LQ = lower

quartile; UP = upper quartile; Di�test = signi�cance of the t-test of H0 : E[ÂPE] = E[APEtrue] with - : p ≤ 0.1 , * : p < 0.1 , ** : p < 0.05, *** :
p < 0.01, Biasratio describes the ratio of positive vs. negative bias

Scenario characteristics: u1 ∼ Normal(0, 1), u2 ∼ Normal(0, 1), Cθ = Gaussian, corr(u1, u2) = 0.6, SD(v) = 2.0
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Table A4: Simulation Results for APE of y2 - Di�erent degree of endogeneity (All statistics)

corr(u1,u2) = 0.1 true APEy2 = 0.173

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1731 0.0000 0.0076 0.0073 0.1680 0.1733 0.1780 - 49-51
2SLS 0.1733 0.0002 0.0119 0.0117 0.1652 0.1731 0.1811 - 50-50
Generated Instr. 2SLS 0.1733 0.0002 0.0109 0.0107 0.1662 0.1735 0.1806 - 49-51
Recursive Biprobit 0.1731 0.0000 0.0098 0.0096 0.1664 0.1736 0.1795 - 48-52
Special Reg. KeDe AIF 0.1698 -0.0032 0.0124 0.0126 0.1618 0.1703 0.1781 - 59-41
Special Reg. SoDa AIF 0.1686 -0.0045 0.0161 0.0165 0.1581 0.1687 0.1796 - 61-39
Special Reg. KeDe ASF 0.1704 -0.0027 0.0125 0.0126 0.1619 0.1710 0.1785 - 58-42
Special Reg. SoDa ASF 0.1691 -0.0040 0.0163 0.0166 0.1583 0.1691 0.1804 - 59-41
Probit 0.1887 0.0156 0.0067 0.0169 0.1844 0.1887 0.1932 ** 1-99

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1732 0.0001 0.0103 0.0101 0.1657 0.1731 0.1806 - 50-50
2SLS 0.1731 0.0000 0.0166 0.0165 0.1621 0.1738 0.1843 - 49-51
Generated Instr. 2SLS 0.1732 0.0001 0.0152 0.0151 0.1629 0.1735 0.1830 - 49-51
Recursive Biprobit 0.1732 0.0001 0.0136 0.0135 0.1638 0.1734 0.1821 - 49-51
Special Reg. KeDe AIF 0.1702 -0.0029 0.0179 0.0180 0.1577 0.1707 0.1821 - 56-44
Special Reg. SoDa AIF 0.1685 -0.0046 0.0218 0.0221 0.1551 0.1685 0.1827 - 59-41
Special Reg. KeDe ASF 0.1711 -0.0020 0.0182 0.0181 0.1585 0.1714 0.1834 - 53-47
Special Reg. SoDa ASF 0.1695 -0.0036 0.0221 0.0223 0.1562 0.1698 0.1837 - 56-44
Probit 0.1884 0.0153 0.0093 0.0178 0.1821 0.1884 0.1948 - 5-95

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1729 -0.0001 0.0234 0.0229 0.1572 0.1717 0.1884 - 51-49
2SLS 0.1739 0.0009 0.0371 0.0366 0.1492 0.1744 0.2004 - 47-53
Generated Instr. 2SLS 0.1747 0.0017 0.0343 0.0338 0.1519 0.1761 0.1980 - 46-54
Recursive Biprobit 0.1733 0.0003 0.0304 0.0299 0.1521 0.1740 0.1938 - 49-51
Special Reg. KeDe AIF 0.1675 -0.0056 0.0398 0.0399 0.1413 0.1685 0.1949 - 55-45
Special Reg. SoDa AIF 0.1642 -0.0088 0.0488 0.0494 0.1305 0.1656 0.1976 - 56-44
Special Reg. KeDe ASF 0.1703 -0.0027 0.0408 0.0406 0.1432 0.1714 0.1989 - 51-49
Special Reg. SoDa ASF 0.1670 -0.0061 0.0501 0.0502 0.1333 0.1677 0.2001 - 54-46
Probit 0.1883 0.0153 0.0216 0.0259 0.1741 0.1879 0.2025 - 23-77

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1718 -0.0015 0.0347 0.0338 0.1486 0.1711 0.1952 - 53-47
2SLS 0.1731 -0.0002 0.0525 0.0517 0.1382 0.1732 0.2077 - 50-50
Generated Instr. 2SLS 0.1720 -0.0012 0.0494 0.0486 0.1390 0.1728 0.2038 - 50-50
Recursive Biprobit 0.1715 -0.0017 0.0449 0.0442 0.1417 0.1706 0.2022 - 52-48
Special Reg. KeDe AIF 0.1667 -0.0066 0.0553 0.0552 0.1268 0.1678 0.2060 - 52-48
Special Reg. SoDa AIF 0.1608 -0.0125 0.0657 0.0663 0.1130 0.1629 0.2080 - 56-44
Special Reg. KeDe ASF 0.1713 -0.0020 0.0572 0.0566 0.1309 0.1743 0.2133 - 50-50
Special Reg. SoDa ASF 0.1653 -0.0080 0.0680 0.0678 0.1163 0.1662 0.2140 - 54-46
Probit 0.1878 0.0145 0.0313 0.0335 0.1661 0.1874 0.2083 - 31-69

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1718 -0.0014 0.0480 0.0473 0.1400 0.1728 0.2055 - 51-49
2SLS 0.1704 -0.0028 0.0718 0.0712 0.1208 0.1695 0.2187 - 53-47
Generated Instr. 2SLS 0.1712 -0.0020 0.0673 0.0663 0.1252 0.1722 0.2185 - 52-48
Recursive Biprobit 0.1697 -0.0036 0.0636 0.0628 0.1248 0.1685 0.2153 - 53-47
Special Reg. KeDe AIF 0.1601 -0.0131 0.0759 0.0767 0.1095 0.1607 0.2162 - 56-44
Special Reg. SoDa AIF 0.1562 -0.0170 0.0923 0.0935 0.0928 0.1587 0.2218 - 55-45
Special Reg. KeDe ASF 0.1673 -0.0060 0.0799 0.0797 0.1135 0.1664 0.2230 - 53-47
Special Reg. SoDa ASF 0.1632 -0.0101 0.0971 0.0972 0.0963 0.1636 0.2326 - 53-47
Probit 0.1872 0.0140 0.0442 0.0453 0.1580 0.1873 0.2166 - 38-62

corr(u1,u2) = 0.9 true APEy2 = 0.173

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1728 -0.0003 0.0053 0.0050 0.1693 0.1729 0.1763 - 52-48
2SLS 0.1776 0.0046 0.0115 0.0122 0.1701 0.1779 0.1854 - 33-67
Generated Instr. 2SLS 0.1789 0.0058 0.0106 0.0119 0.1721 0.1790 0.1861 - 27-73
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Recursive Biprobit 0.1728 -0.0002 0.0079 0.0077 0.1678 0.1732 0.1779 - 50-50
Special Reg. KeDe AIF 0.1715 -0.0016 0.0129 0.0128 0.1630 0.1715 0.1805 - 56-44
Special Reg. SoDa AIF 0.1705 -0.0026 0.0165 0.0165 0.1591 0.1707 0.1822 - 56-44
Special Reg. KeDe ASF 0.1936 0.0206 0.0179 0.0272 0.1813 0.1941 0.2056 - 13-87
Special Reg. SoDa ASF 0.1925 0.0194 0.0215 0.0289 0.1783 0.1926 0.2067 - 18-82
Probit 0.3137 0.1406 0.0067 0.1408 0.3093 0.3136 0.3182 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1729 -0.0002 0.0080 0.0077 0.1675 0.1729 0.1781 - 51-49
2SLS 0.1777 0.0046 0.0167 0.0171 0.1671 0.1781 0.1889 - 39-61
Generated Instr. 2SLS 0.1789 0.0058 0.0156 0.0165 0.1684 0.1795 0.1896 - 35-65
Recursive Biprobit 0.1731 -0.0000 0.0120 0.0118 0.1654 0.1737 0.1809 - 48-52
Special Reg. KeDe AIF 0.1719 -0.0012 0.0189 0.0188 0.1589 0.1720 0.1850 - 52-48
Special Reg. SoDa AIF 0.1701 -0.0030 0.0240 0.0242 0.1538 0.1698 0.1861 - 56-44
Special Reg. KeDe ASF 0.1720 -0.0011 0.0193 0.0193 0.1582 0.1722 0.1850 - 52-48
Special Reg. SoDa ASF 0.1702 -0.0029 0.0244 0.0245 0.1537 0.1695 0.1860 - 56-44
Probit 0.3135 0.1404 0.0097 0.1407 0.3071 0.3135 0.3202 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1738 0.0007 0.0179 0.0172 0.1614 0.1736 0.1851 - 49-51
2SLS 0.1794 0.0064 0.0377 0.0377 0.1551 0.1806 0.2055 - 42-58
Generated Instr. 2SLS 0.1812 0.0082 0.0350 0.0353 0.1589 0.1819 0.2053 - 38-62
Recursive Biprobit 0.1738 0.0008 0.0263 0.0257 0.1541 0.1743 0.1919 - 49-51
Special Reg. KeDe AIF 0.1710 -0.0020 0.0428 0.0425 0.1424 0.1718 0.2003 - 51-49
Special Reg. SoDa AIF 0.1698 -0.0032 0.0531 0.0529 0.1359 0.1712 0.2050 - 52-48
Special Reg. KeDe ASF 0.1722 -0.0008 0.0432 0.0429 0.1438 0.1726 0.2019 - 51-49
Special Reg. SoDa ASF 0.1711 -0.0019 0.0537 0.0534 0.1371 0.1721 0.2054 - 51-49
Probit 0.3145 0.1414 0.0214 0.1429 0.2985 0.3142 0.3298 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1724 -0.0009 0.0258 0.0249 0.1558 0.1720 0.1892 - 53-47
2SLS 0.1760 0.0027 0.0513 0.0507 0.1420 0.1764 0.2089 - 48-52
Generated Instr. 2SLS 0.1776 0.0043 0.0484 0.0478 0.1468 0.1770 0.2100 - 47-53
Recursive Biprobit 0.1721 -0.0012 0.0377 0.0371 0.1471 0.1714 0.1968 - 52-48
Special Reg. KeDe AIF 0.1679 -0.0054 0.0576 0.0575 0.1287 0.1699 0.2089 - 53-47
Special Reg. SoDa AIF 0.1654 -0.0079 0.0713 0.0713 0.1171 0.1668 0.2176 - 53-47
Special Reg. KeDe ASF 0.1710 -0.0023 0.0586 0.0583 0.1303 0.1739 0.2136 - 50-50
Special Reg. SoDa ASF 0.1685 -0.0048 0.0728 0.0726 0.1183 0.1704 0.2207 - 51-49
Probit 0.3141 0.1408 0.0304 0.1436 0.2935 0.3156 0.3341 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1728 -0.0004 0.0355 0.0344 0.1478 0.1724 0.1966 - 50-50
2SLS 0.1733 0.0001 0.0716 0.0709 0.1259 0.1719 0.2243 - 50-50
Generated Instr. 2SLS 0.1767 0.0035 0.0658 0.0647 0.1330 0.1783 0.2215 - 47-53
Recursive Biprobit 0.1762 0.0029 0.0503 0.0497 0.1425 0.1738 0.2089 - 48-52
Special Reg. KeDe AIF 0.1610 -0.0123 0.0813 0.0819 0.1066 0.1619 0.2189 - 56-44
Special Reg. SoDa AIF 0.1551 -0.0181 0.0965 0.0981 0.0903 0.1571 0.2209 - 56-44
Special Reg. KeDe ASF 0.1667 -0.0066 0.0843 0.0843 0.1108 0.1658 0.2272 - 53-47
Special Reg. SoDa ASF 0.1610 -0.0122 0.1010 0.1018 0.0954 0.1634 0.2294 - 54-46
Probit 0.3139 0.1406 0.0423 0.1462 0.2857 0.3138 0.3435 *** 100

"Re�ecting endogeneity" plugs u2 as additional covariate in the structural equation.
BIAS = average di�erence between the estimated and the true APE; SD = standard deviation; RMSE = root mean squared error; LQ = lower

quartile; UP = upper quartile; Di�test = signi�cance of the t-test of H0 : E[ÂPE] = E[APEtrue] with - : p ≤ 0.1 , * : p < 0.1 , ** : p < 0.05,
*** : p < 0.01, Biasratio describes the ratio of positive vs. negative bias

Scenario characteristics: u1 ∼ Normal(0, 1), u2 ∼ Normal(0, 1), Cθ = Gaussian, SD(v) = 2.0, F [δz21 ] ≥ 100.00
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Table A5: Simulation Results for APE of y2 - Di�erent joint CDF (All statistics)

Cθ = Clayton true APEy2 = 0.173

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1727 -0.0004 0.0068 0.0066 0.1681 0.1726 0.1774 - 52-48
2SLS 0.1753 0.0022 0.0111 0.0112 0.1681 0.1752 0.1826 - 41-59
Generated Instr. 2SLS 0.1754 0.0023 0.0104 0.0104 0.1685 0.1753 0.1821 - 42-58
Recursive Biprobit 0.1749 0.0018 0.0090 0.0090 0.1686 0.1746 0.1806 - 43-57
Special Reg. KeDe AIF 0.1711 -0.0020 0.0125 0.0125 0.1626 0.1712 0.1796 - 56-44
Special Reg. SoDa AIF 0.1698 -0.0033 0.0159 0.0162 0.1580 0.1702 0.1804 - 57-43
Special Reg. KeDe ASF 0.1686 -0.0045 0.0134 0.0140 0.1597 0.1693 0.1778 - 62-38
Special Reg. SoDa ASF 0.1673 -0.0058 0.0166 0.0175 0.1555 0.1675 0.1781 - 62-38
Probit 0.2705 0.0974 0.0068 0.0977 0.2656 0.2706 0.2749 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1727 -0.0004 0.0092 0.0091 0.1661 0.1729 0.1790 - 52-48
2SLS 0.1744 0.0014 0.0157 0.0157 0.1635 0.1746 0.1842 - 47-53
Generated Instr. 2SLS 0.1748 0.0017 0.0144 0.0144 0.1652 0.1745 0.1852 - 46-54
Recursive Biprobit 0.1747 0.0016 0.0126 0.0126 0.1659 0.1743 0.1830 - 46-54
Special Reg. KeDe AIF 0.1709 -0.0022 0.0181 0.0182 0.1593 0.1705 0.1827 - 55-45
Special Reg. SoDa AIF 0.1698 -0.0033 0.0241 0.0243 0.1544 0.1702 0.1868 - 55-45
Special Reg. KeDe ASF 0.1701 -0.0030 0.0182 0.0184 0.1583 0.1699 0.1819 - 57-43
Special Reg. SoDa ASF 0.1691 -0.0040 0.0242 0.0245 0.1530 0.1692 0.1859 - 56-44
Probit 0.2707 0.0976 0.0092 0.0980 0.2643 0.2705 0.2768 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1723 -0.0007 0.0219 0.0213 0.1568 0.1722 0.1868 - 52-48
2SLS 0.1749 0.0019 0.0387 0.0383 0.1484 0.1749 0.2014 - 48-52
Generated Instr. 2SLS 0.1752 0.0022 0.0352 0.0348 0.1505 0.1755 0.1997 - 47-53
Recursive Biprobit 0.1736 0.0006 0.0295 0.0290 0.1532 0.1731 0.1939 - 50-50
Special Reg. KeDe AIF 0.1681 -0.0049 0.0410 0.0410 0.1410 0.1681 0.1972 - 55-45
Special Reg. SoDa AIF 0.1656 -0.0074 0.0501 0.0504 0.1329 0.1679 0.2008 - 54-46
Special Reg. KeDe ASF 0.1697 -0.0034 0.0415 0.0414 0.1415 0.1693 0.1992 - 54-46
Special Reg. SoDa ASF 0.1672 -0.0059 0.0509 0.0510 0.1339 0.1684 0.2024 - 53-47
Probit 0.2703 0.0973 0.0217 0.0994 0.2552 0.2701 0.2846 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1719 -0.0014 0.0312 0.0306 0.1513 0.1714 0.1937 - 52-48
2SLS 0.1735 0.0002 0.0514 0.0510 0.1374 0.1747 0.2085 - 49-51
Generated Instr. 2SLS 0.1744 0.0011 0.0484 0.0479 0.1410 0.1767 0.2070 - 48-52
Recursive Biprobit 0.1722 -0.0011 0.0426 0.0420 0.1443 0.1710 0.2023 - 52-48
Special Reg. KeDe AIF 0.1674 -0.0059 0.0553 0.0553 0.1294 0.1694 0.2058 - 53-47
Special Reg. SoDa AIF 0.1633 -0.0100 0.0707 0.0711 0.1172 0.1632 0.2112 - 55-45
Special Reg. KeDe ASF 0.1708 -0.0024 0.0568 0.0565 0.1300 0.1724 0.2077 - 52-48
Special Reg. SoDa ASF 0.1670 -0.0063 0.0729 0.0728 0.1203 0.1667 0.2143 - 54-46
Probit 0.2703 0.0970 0.0314 0.1016 0.2479 0.2702 0.2917 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1734 0.0002 0.0436 0.0424 0.1438 0.1723 0.2011 - 49-51
2SLS 0.1768 0.0036 0.0695 0.0687 0.1317 0.1768 0.2241 - 47-53
Generated Instr. 2SLS 0.1784 0.0052 0.0666 0.0658 0.1324 0.1781 0.2237 - 47-53
Recursive Biprobit 0.1744 0.0011 0.0594 0.0586 0.1337 0.1746 0.2123 - 49-51
Special Reg. KeDe AIF 0.1660 -0.0072 0.0776 0.0776 0.1139 0.1662 0.2210 - 54-46
Special Reg. SoDa AIF 0.1641 -0.0091 0.0940 0.0943 0.1039 0.1666 0.2273 - 54-46
Special Reg. KeDe ASF 0.1722 -0.0011 0.0811 0.0807 0.1162 0.1729 0.2299 - 50-50
Special Reg. SoDa ASF 0.1704 -0.0028 0.0990 0.0988 0.1060 0.1696 0.2353 - 51-49
Probit 0.2703 0.0971 0.0433 0.1055 0.2395 0.2690 0.3013 ** 1-99

Cθ = Frank true APEy2 = 0.173

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1744 0.0014 0.0068 0.0067 0.1699 0.1743 0.1789 - 42-58
2SLS 0.1754 0.0024 0.0110 0.0111 0.1684 0.1755 0.1826 - 41-59
Generated Instr. 2SLS 0.1756 0.0025 0.0102 0.0103 0.1690 0.1757 0.1823 - 39-61
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Recursive Biprobit 0.1745 0.0014 0.0087 0.0086 0.1687 0.1741 0.1797 - 44-56
Special Reg. KeDe AIF 0.1711 -0.0019 0.0124 0.0124 0.1627 0.1710 0.1796 - 57-43
Special Reg. SoDa AIF 0.1696 -0.0034 0.0157 0.0160 0.1585 0.1694 0.1806 - 59-41
Special Reg. KeDe ASF 0.1705 -0.0025 0.0125 0.0126 0.1620 0.1704 0.1788 - 59-41
Special Reg. SoDa ASF 0.1690 -0.0040 0.0158 0.0161 0.1577 0.1688 0.1798 - 60-40
Probit 0.2688 0.0958 0.0068 0.0960 0.2643 0.2686 0.2731 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1745 0.0014 0.0097 0.0096 0.1676 0.1746 0.1809 - 44-56
2SLS 0.1749 0.0018 0.0156 0.0157 0.1636 0.1747 0.1853 - 47-53
Generated Instr. 2SLS 0.1754 0.0023 0.0144 0.0145 0.1656 0.1752 0.1851 - 44-56
Recursive Biprobit 0.1743 0.0012 0.0129 0.0129 0.1653 0.1744 0.1830 - 46-54
Special Reg. KeDe AIF 0.1713 -0.0018 0.0181 0.0181 0.1594 0.1713 0.1829 - 55-45
Special Reg. SoDa AIF 0.1693 -0.0038 0.0227 0.0230 0.1553 0.1690 0.1854 - 57-43
Special Reg. KeDe ASF 0.1710 -0.0021 0.0182 0.0182 0.1590 0.1710 0.1827 - 55-45
Special Reg. SoDa ASF 0.1691 -0.0040 0.0228 0.0232 0.1551 0.1687 0.1853 - 57-42
Probit 0.2687 0.0957 0.0098 0.0961 0.2621 0.2687 0.2756 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1741 0.0011 0.0226 0.0220 0.1592 0.1737 0.1890 - 49-51
2SLS 0.1753 0.0023 0.0385 0.0381 0.1483 0.1743 0.2031 - 49-51
Generated Instr. 2SLS 0.1758 0.0028 0.0352 0.0347 0.1522 0.1757 0.1996 - 47-53
Recursive Biprobit 0.1741 0.0011 0.0299 0.0294 0.1545 0.1724 0.1938 - 50-50
Special Reg. KeDe AIF 0.1686 -0.0045 0.0411 0.0410 0.1402 0.1688 0.1986 - 53-47
Special Reg. SoDa AIF 0.1662 -0.0068 0.0508 0.0510 0.1324 0.1673 0.2017 - 53-47
Special Reg. KeDe ASF 0.1704 -0.0026 0.0416 0.0414 0.1417 0.1704 0.1998 - 52-48
Special Reg. SoDa ASF 0.1681 -0.0050 0.0517 0.0517 0.1337 0.1692 0.2048 - 52-48
Probit 0.2684 0.0954 0.0218 0.0976 0.2537 0.2682 0.2828 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1744 0.0011 0.0307 0.0300 0.1549 0.1746 0.1950 - 49-51
2SLS 0.1743 0.0010 0.0519 0.0514 0.1395 0.1760 0.2098 - 48-52
Generated Instr. 2SLS 0.1756 0.0023 0.0489 0.0483 0.1431 0.1768 0.2087 - 47-53
Recursive Biprobit 0.1727 -0.0006 0.0430 0.0424 0.1428 0.1734 0.1998 - 49-51
Special Reg. KeDe AIF 0.1682 -0.0051 0.0557 0.0556 0.1298 0.1702 0.2069 - 52-48
Special Reg. SoDa AIF 0.1637 -0.0096 0.0684 0.0688 0.1216 0.1652 0.2099 - 56-44
Special Reg. KeDe ASF 0.1716 -0.0017 0.0569 0.0566 0.1325 0.1724 0.2108 - 50-50
Special Reg. SoDa ASF 0.1674 -0.0058 0.0703 0.0702 0.1242 0.1681 0.2159 - 54-46
Probit 0.2694 0.0961 0.0307 0.1004 0.2487 0.2699 0.2883 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1743 0.0010 0.0437 0.0424 0.1457 0.1732 0.2019 - 50-50
2SLS 0.1763 0.0030 0.0696 0.0687 0.1295 0.1767 0.2250 - 48-52
Generated Instr. 2SLS 0.1778 0.0046 0.0661 0.0653 0.1335 0.1784 0.2210 - 46-54
Recursive Biprobit 0.1748 0.0016 0.0582 0.0574 0.1365 0.1726 0.2131 - 50-50
Special Reg. KeDe AIF 0.1661 -0.0071 0.0777 0.0776 0.1134 0.1675 0.2208 - 53-47
Special Reg. SoDa AIF 0.1600 -0.0133 0.0909 0.0915 0.0997 0.1636 0.2222 - 55-45
Special Reg. KeDe ASF 0.1714 -0.0019 0.0805 0.0801 0.1152 0.1709 0.2285 - 50-50
Special Reg. SoDa ASF 0.1660 -0.0073 0.0951 0.0950 0.1018 0.1679 0.2303 - 53-47
Probit 0.2692 0.0959 0.0434 0.1043 0.2404 0.2689 0.2998 ** 1-99

Cθ = Gumbel true APEy2 = 0.173

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1741 0.0010 0.0066 0.0066 0.1697 0.1740 0.1787 - 46-54
2SLS 0.1760 0.0030 0.0110 0.0113 0.1685 0.1760 0.1835 - 42-58
Generated Instr. 2SLS 0.1768 0.0037 0.0104 0.0109 0.1699 0.1768 0.1837 - 36-64
Recursive Biprobit 0.1755 0.0025 0.0089 0.0091 0.1692 0.1750 0.1817 - 40-60
Special Reg. KeDe AIF 0.1713 -0.0017 0.0126 0.0127 0.1628 0.1710 0.1798 - 56-44
Special Reg. SoDa AIF 0.1703 -0.0027 0.0162 0.0164 0.1597 0.1698 0.1811 - 58-42
Special Reg. KeDe ASF 0.1709 -0.0021 0.0127 0.0128 0.1623 0.1705 0.1789 - 57-42
Special Reg. SoDa ASF 0.1699 -0.0031 0.0163 0.0166 0.1592 0.1692 0.1806 - 58-42
Probit 0.2642 0.0912 0.0067 0.0914 0.2598 0.2639 0.2687 *** 100

N = 5000
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Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1741 0.0010 0.0103 0.0101 0.1669 0.1743 0.1811 - 45-55
2SLS 0.1760 0.0029 0.0165 0.0166 0.1649 0.1766 0.1868 - 42-58
Generated Instr. 2SLS 0.1769 0.0038 0.0151 0.0154 0.1672 0.1775 0.1875 - 40-60
Recursive Biprobit 0.1757 0.0026 0.0135 0.0136 0.1672 0.1757 0.1841 - 42-58
Special Reg. KeDe AIF 0.1715 -0.0016 0.0190 0.0189 0.1591 0.1719 0.1839 - 53-47
Special Reg. SoDa AIF 0.1701 -0.0030 0.0239 0.0240 0.1533 0.1696 0.1866 - 55-45
Special Reg. KeDe ASF 0.1715 -0.0016 0.0191 0.0190 0.1590 0.1716 0.1844 - 53-47
Special Reg. SoDa ASF 0.1701 -0.0030 0.0240 0.0241 0.1532 0.1699 0.1868 - 56-44
Probit 0.2641 0.0910 0.0101 0.0915 0.2571 0.2643 0.2709 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1742 0.0011 0.0212 0.0207 0.1596 0.1740 0.1882 - 47-53
2SLS 0.1778 0.0048 0.0352 0.0351 0.1543 0.1796 0.2024 - 43-57
Generated Instr. 2SLS 0.1783 0.0053 0.0327 0.0326 0.1554 0.1800 0.2008 - 42-58
Recursive Biprobit 0.1761 0.0031 0.0290 0.0287 0.1562 0.1758 0.1953 - 46-54
Special Reg. KeDe AIF 0.1698 -0.0032 0.0391 0.0390 0.1431 0.1692 0.1961 - 54-46
Special Reg. SoDa AIF 0.1665 -0.0065 0.0481 0.0484 0.1330 0.1675 0.1989 - 55-45
Special Reg. KeDe ASF 0.1716 -0.0015 0.0399 0.0397 0.1444 0.1706 0.1982 - 53-47
Special Reg. SoDa ASF 0.1684 -0.0047 0.0492 0.0493 0.1341 0.1689 0.2009 - 53-47
Probit 0.2643 0.0913 0.0202 0.0933 0.2510 0.2643 0.2779 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1756 0.0023 0.0311 0.0303 0.1549 0.1763 0.1957 - 46-54
2SLS 0.1797 0.0064 0.0528 0.0528 0.1448 0.1790 0.2164 - 46-54
Generated Instr. 2SLS 0.1796 0.0063 0.0486 0.0484 0.1480 0.1806 0.2130 - 45-55
Recursive Biprobit 0.1769 0.0037 0.0421 0.0419 0.1475 0.1768 0.2055 - 46-54
Special Reg. KeDe AIF 0.1724 -0.0009 0.0571 0.0569 0.1337 0.1735 0.2116 - 49-51
Special Reg. SoDa AIF 0.1677 -0.0056 0.0696 0.0697 0.1258 0.1707 0.2173 - 51-49
Special Reg. KeDe ASF 0.1763 0.0030 0.0586 0.0584 0.1373 0.1766 0.2155 - 47-53
Special Reg. SoDa ASF 0.1718 -0.0015 0.0717 0.0716 0.1274 0.1745 0.2217 - 50-50
Probit 0.2655 0.0922 0.0305 0.0966 0.2447 0.2661 0.2860 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1743 0.0010 0.0437 0.0429 0.1436 0.1717 0.2036 - 50-50
2SLS 0.1727 -0.0005 0.0699 0.0694 0.1245 0.1761 0.2205 - 49-51
Generated Instr. 2SLS 0.1761 0.0028 0.0641 0.0637 0.1316 0.1770 0.2231 - 48-52
Recursive Biprobit 0.1738 0.0005 0.0578 0.0573 0.1349 0.1733 0.2153 - 50-50
Special Reg. KeDe AIF 0.1622 -0.0110 0.0790 0.0796 0.1130 0.1632 0.2135 - 55-45
Special Reg. SoDa AIF 0.1568 -0.0164 0.0928 0.0945 0.0911 0.1555 0.2226 - 57-43
Special Reg. KeDe ASF 0.1691 -0.0041 0.0833 0.0833 0.1169 0.1704 0.2238 - 51-49
Special Reg. SoDa ASF 0.1644 -0.0088 0.1009 0.1015 0.0965 0.1622 0.2320 - 55-45
Probit 0.2644 0.0912 0.0420 0.0996 0.2333 0.2655 0.2936 ** 1-99

Cθ = t true APEy2 = 0.173

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1756 0.0025 0.0069 0.0071 0.1711 0.1753 0.1802 - 35-65
2SLS 0.1763 0.0032 0.0116 0.0119 0.1680 0.1763 0.1841 - 39-61
Generated Instr. 2SLS 0.1771 0.0040 0.0108 0.0113 0.1697 0.1772 0.1847 - 36-64
Recursive Biprobit 0.1837 0.0107 0.0091 0.0139 0.1775 0.1838 0.1903 - 13-87
Special Reg. KeDe AIF 0.1707 -0.0024 0.0128 0.0129 0.1622 0.1708 0.1792 - 57-43
Special Reg. SoDa AIF 0.1698 -0.0032 0.0165 0.0167 0.1591 0.1703 0.1813 - 57-43
Special Reg. KeDe ASF 0.1703 -0.0028 0.0129 0.0130 0.1617 0.1704 0.1786 - 58-42
Special Reg. SoDa ASF 0.1694 -0.0037 0.0165 0.0168 0.1586 0.1698 0.1809 - 58-42
Probit 0.2616 0.0885 0.0068 0.0888 0.2569 0.2614 0.2659 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1760 0.0029 0.0096 0.0098 0.1692 0.1758 0.1827 - 38-62
2SLS 0.1764 0.0033 0.0160 0.0162 0.1661 0.1762 0.1875 - 41-59
Generated Instr. 2SLS 0.1773 0.0042 0.0147 0.0150 0.1682 0.1772 0.1874 - 38-62
Recursive Biprobit 0.1838 0.0107 0.0129 0.0166 0.1753 0.1840 0.1923 - 20-80
Special Reg. KeDe AIF 0.1715 -0.0016 0.0179 0.0178 0.1604 0.1717 0.1836 - 54-46
Special Reg. SoDa AIF 0.1695 -0.0036 0.0227 0.0229 0.1551 0.1698 0.1848 - 56-44
Special Reg. KeDe ASF 0.1714 -0.0017 0.0180 0.0180 0.1600 0.1714 0.1836 - 54-46
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Special Reg. SoDa ASF 0.1694 -0.0037 0.0228 0.0230 0.1549 0.1699 0.1844 - 57-43
Probit 0.2614 0.0883 0.0097 0.0888 0.2546 0.2616 0.2680 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1761 0.0030 0.0224 0.0221 0.1608 0.1769 0.1904 - 44-56
2SLS 0.1778 0.0047 0.0374 0.0372 0.1526 0.1768 0.2039 - 45-55
Generated Instr. 2SLS 0.1795 0.0065 0.0353 0.0353 0.1569 0.1798 0.2035 - 42-58
Recursive Biprobit 0.1842 0.0112 0.0299 0.0314 0.1645 0.1846 0.2057 - 35-65
Special Reg. KeDe AIF 0.1697 -0.0033 0.0414 0.0413 0.1400 0.1712 0.1993 - 52-48
Special Reg. SoDa AIF 0.1676 -0.0054 0.0500 0.0500 0.1319 0.1701 0.2019 - 52-48
Special Reg. KeDe ASF 0.1715 -0.0015 0.0420 0.0418 0.1425 0.1720 0.2013 - 51-49
Special Reg. SoDa ASF 0.1696 -0.0035 0.0510 0.0508 0.1335 0.1721 0.2043 - 51-49
Probit 0.2622 0.0892 0.0219 0.0916 0.2477 0.2619 0.2777 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1758 0.0025 0.0319 0.0308 0.1544 0.1755 0.1951 - 47-53
2SLS 0.1751 0.0018 0.0510 0.0502 0.1410 0.1749 0.2092 - 50-50
Generated Instr. 2SLS 0.1761 0.0029 0.0486 0.0478 0.1428 0.1749 0.2072 - 49-51
Recursive Biprobit 0.1806 0.0073 0.0426 0.0423 0.1520 0.1789 0.2088 - 43-57
Special Reg. KeDe AIF 0.1669 -0.0064 0.0562 0.0560 0.1288 0.1677 0.2067 - 54-46
Special Reg. SoDa AIF 0.1610 -0.0122 0.0673 0.0680 0.1167 0.1619 0.2053 - 56-44
Special Reg. KeDe ASF 0.1706 -0.0027 0.0577 0.0573 0.1324 0.1728 0.2122 - 51-49
Special Reg. SoDa ASF 0.1647 -0.0086 0.0692 0.0694 0.1193 0.1656 0.2123 - 55-45
Probit 0.2612 0.0879 0.0312 0.0928 0.2399 0.2618 0.2825 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1770 0.0038 0.0440 0.0429 0.1475 0.1755 0.2073 - 48-52
2SLS 0.1734 0.0002 0.0733 0.0725 0.1214 0.1729 0.2220 - 50-50
Generated Instr. 2SLS 0.1768 0.0035 0.0675 0.0665 0.1297 0.1775 0.2214 - 47-53
Recursive Biprobit 0.1791 0.0059 0.0607 0.0600 0.1367 0.1777 0.2195 - 47-53
Special Reg. KeDe AIF 0.1608 -0.0124 0.0787 0.0794 0.1065 0.1623 0.2169 - 56-44
Special Reg. SoDa AIF 0.1582 -0.0150 0.0928 0.0939 0.0969 0.1625 0.2249 - 54-46
Special Reg. KeDe ASF 0.1666 -0.0066 0.0826 0.0826 0.1098 0.1687 0.2225 - 53-47
Special Reg. SoDa ASF 0.1642 -0.0090 0.0977 0.0980 0.1003 0.1676 0.2309 - 52-48
Probit 0.2626 0.0894 0.0444 0.0989 0.2327 0.2622 0.2925 ** 2-98

"Re�ecting endogeneity" plugs u2 as additional covariate in the structural equation.
BIAS = average di�erence between the estimated and the true APE; SD = standard deviation; RMSE = root mean squared error; LQ = lower

quartile; UP = upper quartile; Di�test = signi�cance of the t-test of H0 : E[ÂPE] = E[APEtrue] with - : p ≤ 0.1 , * : p < 0.1 , ** : p < 0.05,
*** : p < 0.01, Biasratio describes the ratio of positive vs. negative bias

Scenario characteristics: u1 ∼ Normal(0, 1), u2 ∼ Normal(0, 1), corr(u1, u2) = 0.6, SD(v) = 2.0, F [δz21 ] ≥ 100.00
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Table A6: Simulation Results for APE of y2 - Di�erent Marginal CDF (All statistics)

u1 ∼ F (10, 6)
u2 ∼ F (10, 6)

true APEy2 = 0.172

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1899 0.0179 0.0081 0.0195 0.1840 0.1898 0.1955 ** 100
2SLS 0.1813 0.0093 0.0119 0.0149 0.1729 0.1819 0.1891 - 21-79
Generated Instr. 2SLS 0.1819 0.0099 0.0108 0.0145 0.1747 0.1824 0.1888 - 17-83
Recursive Biprobit 0.1775 0.0055 0.0096 0.0109 0.1714 0.1772 0.1839 - 26-74
Special Reg. KeDe AIF 0.1745 0.0025 0.0358 0.0359 0.1608 0.1746 0.1895 - 45-55
Special Reg. SoDa AIF 0.1732 0.0012 0.0363 0.0363 0.1559 0.1734 0.1900 - 48-52
Special Reg. KeDe ASF 0.2080 0.0360 0.0482 0.0601 0.1909 0.2075 0.2253 - 9-91
Special Reg. SoDa ASF 0.2067 0.0346 0.0460 0.0575 0.1846 0.2059 0.2272 - 14-86
Probit 0.2626 0.0906 0.0071 0.0908 0.2579 0.2627 0.2676 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1898 0.0176 0.0116 0.0211 0.1816 0.1901 0.1974 - 5-95
2SLS 0.1814 0.0092 0.0164 0.0186 0.1705 0.1819 0.1927 - 28-72
Generated Instr. 2SLS 0.1818 0.0097 0.0149 0.0176 0.1718 0.1826 0.1916 - 25-75
Recursive Biprobit 0.1778 0.0056 0.0134 0.0145 0.1691 0.1782 0.1873 - 32-68
Special Reg. KeDe AIF 0.1757 0.0035 0.0384 0.0384 0.1568 0.1745 0.1933 - 47-53
Special Reg. SoDa AIF 0.1741 0.0019 0.0443 0.0442 0.1517 0.1734 0.1961 - 49-51
Special Reg. KeDe ASF 0.2102 0.0380 0.0565 0.0680 0.1861 0.2081 0.2311 - 12-88
Special Reg. SoDa ASF 0.2086 0.0364 0.0570 0.0675 0.1797 0.2065 0.2342 - 20-80
Probit 0.2624 0.0902 0.0098 0.0907 0.2556 0.2624 0.2691 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1892 0.0174 0.0240 0.0293 0.1741 0.1892 0.2050 - 23-77
2SLS 0.1828 0.0109 0.0362 0.0373 0.1579 0.1838 0.2077 - 37-63
Generated Instr. 2SLS 0.1834 0.0116 0.0330 0.0345 0.1625 0.1830 0.2072 - 36-64
Recursive Biprobit 0.1772 0.0053 0.0296 0.0298 0.1581 0.1775 0.1963 - 41-59
Special Reg. KeDe AIF 0.1752 0.0034 0.0589 0.0589 0.1403 0.1735 0.2080 - 49-51
Special Reg. SoDa AIF 0.1717 -0.0002 0.0686 0.0686 0.1306 0.1695 0.2139 - 51-49
Special Reg. KeDe ASF 0.2106 0.0387 0.0797 0.0886 0.1654 0.2044 0.2489 - 28-72
Special Reg. SoDa ASF 0.2067 0.0349 0.0914 0.0979 0.1537 0.2000 0.2528 - 34-66
Probit 0.2629 0.0910 0.0219 0.0935 0.2482 0.2621 0.2768 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1832 0.0112 0.0333 0.0346 0.1606 0.1821 0.2049 - 36-64
2SLS 0.1792 0.0072 0.0535 0.0533 0.1421 0.1801 0.2115 - 44-56
Generated Instr. 2SLS 0.1787 0.0067 0.0488 0.0485 0.1456 0.1779 0.2110 - 45-55
Recursive Biprobit 0.1733 0.0013 0.0438 0.0432 0.1427 0.1736 0.2017 - 48-52
Special Reg. KeDe AIF 0.1659 -0.0060 0.0776 0.0775 0.1221 0.1676 0.2165 - 53-47
Special Reg. SoDa AIF 0.1621 -0.0099 0.0877 0.0879 0.1050 0.1648 0.2185 - 53-47
Special Reg. KeDe ASF 0.1905 0.0185 0.1033 0.1047 0.1389 0.1883 0.2431 - 42-58
Special Reg. SoDa ASF 0.1862 0.0142 0.1090 0.1096 0.1206 0.1851 0.2502 - 44-56
Probit 0.2598 0.0878 0.0316 0.0930 0.2389 0.2598 0.2796 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1843 0.0121 0.0457 0.0466 0.1532 0.1847 0.2141 - 40-60
2SLS 0.1784 0.0061 0.0698 0.0693 0.1310 0.1817 0.2260 - 46-54
Generated Instr. 2SLS 0.1801 0.0079 0.0648 0.0642 0.1383 0.1822 0.2244 - 44-56
Recursive Biprobit 0.1737 0.0015 0.0593 0.0588 0.1348 0.1711 0.2140 - 51-49
Special Reg. KeDe AIF 0.1626 -0.0096 0.0892 0.0897 0.1112 0.1689 0.2211 - 52-48
Special Reg. SoDa AIF 0.1541 -0.0182 0.1046 0.1062 0.0888 0.1613 0.2239 - 55-45
Special Reg. KeDe ASF 0.1821 0.0098 0.1146 0.1151 0.1196 0.1825 0.2405 - 45-55
Special Reg. SoDa ASF 0.1730 0.0008 0.1319 0.1320 0.0993 0.1710 0.2507 - 50-50
Probit 0.2618 0.0896 0.0432 0.0990 0.2332 0.2618 0.2916 ** 2-98

u1 ∼ log(0, 0.9)
u2 ∼ log(0, 0.9) true APEy2 = 0.154

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

-continued on next page-
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Re�ecting Endogeneity 0.1565 0.0027 0.0083 0.0087 0.1511 0.1567 0.1619 - 36-64
2SLS 0.1601 0.0064 0.0148 0.0160 0.1505 0.1600 0.1701 - 33-67
Generated Instr. 2SLS 0.1609 0.0071 0.0142 0.0158 0.1514 0.1608 0.1708 - 31-69
Recursive Biprobit 0.1526 -0.0011 0.0132 0.0131 0.1438 0.1526 0.1619 - 55-45
Special Reg. KeDe AIF 0.1560 0.0022 0.0246 0.0246 0.1414 0.1547 0.1696 - 48-52
Special Reg. SoDa AIF 0.1555 0.0018 0.0286 0.0286 0.1373 0.1545 0.1738 - 49-51
Special Reg. KeDe ASF 0.1532 -0.0005 0.0246 0.0246 0.1387 0.1521 0.1664 - 53-47
Special Reg. SoDa ASF 0.1528 -0.0010 0.0283 0.0282 0.1347 0.1517 0.1703 - 53-47
Probit 0.3212 0.1675 0.0073 0.1676 0.3164 0.3212 0.3262 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1563 0.0025 0.0121 0.0123 0.1484 0.1569 0.1642 - 40-60
2SLS 0.1595 0.0057 0.0213 0.0221 0.1450 0.1593 0.1736 - 40-60
Generated Instr. 2SLS 0.1603 0.0066 0.0206 0.0215 0.1463 0.1608 0.1735 - 38-62
Recursive Biprobit 0.1521 -0.0016 0.0192 0.0192 0.1394 0.1516 0.1649 - 54-46
Special Reg. KeDe AIF 0.1545 0.0007 0.0329 0.0328 0.1342 0.1550 0.1734 - 49-51
Special Reg. SoDa AIF 0.1539 0.0001 0.0389 0.0388 0.1302 0.1560 0.1780 - 48-52
Special Reg. KeDe ASF 0.1522 -0.0016 0.0328 0.0328 0.1327 0.1524 0.1709 - 51-49
Special Reg. SoDa ASF 0.1517 -0.0021 0.0386 0.0385 0.1281 0.1534 0.1758 - 51-49
Probit 0.3210 0.1672 0.0108 0.1675 0.3138 0.3211 0.3282 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1570 0.0033 0.0266 0.0266 0.1388 0.1571 0.1754 - 46-54
2SLS 0.1615 0.0077 0.0470 0.0474 0.1295 0.1633 0.1933 - 43-57
Generated Instr. 2SLS 0.1626 0.0088 0.0451 0.0457 0.1311 0.1641 0.1932 - 40-60
Recursive Biprobit 0.1536 -0.0002 0.0416 0.0413 0.1253 0.1531 0.1827 - 51-49
Special Reg. KeDe AIF 0.1524 -0.0014 0.0618 0.0618 0.1123 0.1545 0.1941 - 50-50
Special Reg. SoDa AIF 0.1514 -0.0024 0.0748 0.0747 0.1021 0.1539 0.1988 - 50-50
Special Reg. KeDe ASF 0.1522 -0.0016 0.0630 0.0630 0.1123 0.1546 0.1937 - 50-50
Special Reg. SoDa ASF 0.1514 -0.0024 0.0772 0.0771 0.1022 0.1541 0.1983 - 50-50
Probit 0.3211 0.1673 0.0234 0.1689 0.3049 0.3210 0.3363 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1564 0.0024 0.0398 0.0394 0.1286 0.1563 0.1808 - 48-52
2SLS 0.1567 0.0028 0.0665 0.0662 0.1101 0.1551 0.2030 - 50-50
Generated Instr. 2SLS 0.1575 0.0036 0.0641 0.0638 0.1134 0.1545 0.2006 - 49-51
Recursive Biprobit 0.1496 -0.0043 0.0595 0.0594 0.1092 0.1469 0.1901 - 55-45
Special Reg. KeDe AIF 0.1466 -0.0073 0.0827 0.0828 0.0889 0.1500 0.2029 - 52-48
Special Reg. SoDa AIF 0.1431 -0.0108 0.0993 0.0996 0.0770 0.1476 0.2153 - 54-46
Special Reg. KeDe ASF 0.1476 -0.0063 0.0841 0.0842 0.0880 0.1497 0.2047 - 52-48
Special Reg. SoDa ASF 0.1446 -0.0093 0.1028 0.1029 0.0758 0.1464 0.2177 - 53-47
Probit 0.3203 0.1664 0.0347 0.1698 0.2957 0.3196 0.3441 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1574 0.0035 0.0554 0.0551 0.1165 0.1565 0.1950 - 49-51
2SLS 0.1555 0.0016 0.0935 0.0931 0.0933 0.1516 0.2170 - 51-49
Generated Instr. 2SLS 0.1571 0.0031 0.0904 0.0899 0.0962 0.1538 0.2212 - 51-49
Recursive Biprobit 0.1479 -0.0060 0.0863 0.0860 0.0901 0.1476 0.2026 - 53-47
Special Reg. KeDe AIF 0.1429 -0.0110 0.1079 0.1082 0.0666 0.1434 0.2180 - 54-46
Special Reg. SoDa AIF 0.1364 -0.0176 0.1245 0.1255 0.0522 0.1370 0.2244 - 56-44
Special Reg. KeDe ASF 0.1452 -0.0088 0.1137 0.1137 0.0677 0.1458 0.2276 - 53-47
Special Reg. SoDa ASF 0.1383 -0.0156 0.1321 0.1327 0.0548 0.1414 0.2291 - 55-45
Probit 0.3214 0.1675 0.0493 0.1743 0.2868 0.3199 0.3555 *** 100

u1 ∼ t(3)
u2 ∼ t(3) true APEy2 = 0.161

N = 10000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1724 0.0111 0.0085 0.0139 0.1673 0.1726 0.1779 - 7-93
2SLS 0.1669 0.0056 0.0133 0.0143 0.1576 0.1666 0.1760 - 34-66
Generated Instr. 2SLS 0.1676 0.0063 0.0125 0.0138 0.1592 0.1675 0.1760 - 30-70
Recursive Biprobit 0.1586 -0.0026 0.0115 0.0116 0.1512 0.1586 0.1667 - 60-40
Special Reg. KeDe AIF 0.1624 0.0012 0.0283 0.0282 0.1476 0.1607 0.1769 - 50-50
Special Reg. SoDa AIF 0.1607 -0.0006 0.0330 0.0329 0.1423 0.1601 0.1784 - 52-48
Special Reg. KeDe ASF 0.1605 -0.0008 0.0286 0.0285 0.1454 0.1588 0.1747 - 55-45

-continued on next page-
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Special Reg. SoDa ASF 0.1589 -0.0024 0.0333 0.0332 0.1400 0.1580 0.1761 - 55-45
Probit 0.3000 0.1387 0.0071 0.1389 0.2952 0.2998 0.3051 *** 100

N = 5000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1724 0.0110 0.0127 0.0167 0.1639 0.1723 0.1804 - 16-84
2SLS 0.1669 0.0056 0.0192 0.0199 0.1544 0.1674 0.1800 - 38-62
Generated Instr. 2SLS 0.1675 0.0062 0.0179 0.0189 0.1562 0.1674 0.1794 - 36-64
Recursive Biprobit 0.1585 -0.0028 0.0170 0.0171 0.1473 0.1579 0.1699 - 56-44
Special Reg. KeDe AIF 0.1611 -0.0002 0.0415 0.0414 0.1419 0.1610 0.1796 - 51-49
Special Reg. SoDa AIF 0.1600 -0.0014 0.0452 0.0452 0.1375 0.1596 0.1836 - 52-48
Special Reg. KeDe ASF 0.1595 -0.0018 0.0454 0.0454 0.1405 0.1591 0.1781 - 54-46
Special Reg. SoDa ASF 0.1586 -0.0027 0.0465 0.0465 0.1359 0.1573 0.1814 - 54-46
Probit 0.2994 0.1380 0.0107 0.1384 0.2919 0.2993 0.3066 *** 100

N = 1000
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1731 0.0119 0.0269 0.0291 0.1550 0.1733 0.1911 - 34-66
2SLS 0.1677 0.0064 0.0429 0.0430 0.1387 0.1667 0.1981 - 45-55
Generated Instr. 2SLS 0.1692 0.0079 0.0404 0.0407 0.1416 0.1709 0.1979 - 41-59
Recursive Biprobit 0.1590 -0.0023 0.0375 0.0372 0.1337 0.1595 0.1861 - 52-48
Special Reg. KeDe AIF 0.1587 -0.0026 0.0599 0.0598 0.1239 0.1586 0.1960 - 52-48
Special Reg. SoDa AIF 0.1554 -0.0059 0.0727 0.0729 0.1137 0.1567 0.2023 - 53-47
Special Reg. KeDe ASF 0.1595 -0.0018 0.0613 0.0612 0.1241 0.1595 0.1968 - 52-48
Special Reg. SoDa ASF 0.1558 -0.0054 0.0767 0.0769 0.1139 0.1578 0.2029 - 52-48
Probit 0.2995 0.1383 0.0233 0.1401 0.2840 0.2996 0.3151 *** 100

N = 500
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1703 0.0088 0.0371 0.0376 0.1441 0.1698 0.1948 - 41-59
2SLS 0.1649 0.0034 0.0598 0.0595 0.1252 0.1630 0.2071 - 49-51
Generated Instr. 2SLS 0.1657 0.0042 0.0562 0.0560 0.1272 0.1646 0.2043 - 48-52
Recursive Biprobit 0.1561 -0.0054 0.0525 0.0525 0.1201 0.1549 0.1921 - 56-44
Special Reg. KeDe AIF 0.1527 -0.0088 0.0782 0.0786 0.1036 0.1555 0.2076 - 53-47
Special Reg. SoDa AIF 0.1509 -0.0106 0.0911 0.0915 0.0891 0.1542 0.2147 - 53-47
Special Reg. KeDe ASF 0.1547 -0.0068 0.0820 0.0822 0.1057 0.1557 0.2092 - 53-47
Special Reg. SoDa ASF 0.1538 -0.0077 0.0949 0.0951 0.0906 0.1575 0.2219 - 52-48
Probit 0.2985 0.1370 0.0334 0.1407 0.2755 0.2980 0.3217 *** 100

N = 250
Mean BIAS SD RMSE LQ Median UQ Di�test Biasratio

Re�ecting Endogeneity 0.1699 0.0085 0.0529 0.0530 0.1333 0.1678 0.2043 - 46-54
2SLS 0.1615 0.0000 0.0837 0.0831 0.1042 0.1586 0.2171 - 51-49
Generated Instr. 2SLS 0.1631 0.0016 0.0793 0.0786 0.1084 0.1624 0.2139 - 49-51
Recursive Biprobit 0.1533 -0.0082 0.0762 0.0761 0.1052 0.1544 0.2025 - 54-46
Special Reg. KeDe AIF 0.1475 -0.0140 0.1005 0.1012 0.0792 0.1481 0.2162 - 54-46
Special Reg. SoDa AIF 0.1407 -0.0207 0.1192 0.1208 0.0586 0.1443 0.2275 - 55-45
Special Reg. KeDe ASF 0.1514 -0.0100 0.1086 0.1088 0.0828 0.1504 0.2230 - 53-47
Special Reg. SoDa ASF 0.1458 -0.0156 0.1309 0.1317 0.0613 0.1490 0.2344 - 53-47
Probit 0.2995 0.1380 0.0491 0.1460 0.2654 0.2982 0.3322 *** 100

"Re�ecting endogeneity" plugs u2 as additional covariate in the structural equation.
BIAS = average di�erence between the estimated and the true APE; SD = standard deviation; RMSE = root mean squared error; LQ = lower

quartile; UP = upper quartile; Di�test = signi�cance of the t-test of H0 : E[ÂPE] = E[APEtrue] with - : p ≤ 0.1 , * : p < 0.1 , ** : p < 0.05,
*** : p < 0.01, Biasratio describes the ratio of positive vs. negative bias

Scenario characteristics: Cθ = Gaussian, corr(u1, u2) = 0.6, SD(v) = 2.0, F [δz21 ] ≥ 100.00
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