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Abstract

We consider beliefs about real-valued outcomes, and show how to elicit the en-
tire subjective probability distribution with binarized scoring rules. Further, we pro-
pose a simple, incentive compatible elicitation mechanism - multiple point predictions
- that partially identifies the subjective probability distribution. Simultaneously elicit-
ing multiple point predictions with linear incentives reveals the subjective probability
distribution without pre-defined anchors or probabilistic statements. In a laboratory
experiment, we test belief elicitation with multiple point predictions and compare it to
the standard approach of eliciting discrete probabilities on pre-defined intervals. We
find that elicitation with point predictions is faster, more convenient and more predic-
tive of subsequent behavior. In the absence of anchors, the elicited distributions show
evidence of first order biases, but are less prone to overconfidence. Further, the distri-
butions are less accurate for uninformed participants, and more accurate if participants
have heterogeneous information.
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dence; experiment
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1 Introduction
Economic modeling and decision making under uncertainty often rely on subjective beliefs and the
elicitation thereof. We consider beliefs about real-valued variables (e.g., income, profit, inflation,
growth rates, exchange rates, survival rates, infection rates, second-order probabilities), which take
the form of continuous probability distributions.1 As the human mind is commonly not used to
processing probability distributions, the elicitation can be challenging in practice. In this paper,
we propose to elicit subjective probability distributions indirectly with linear incentive schemes and
framed as point predictions.

In the first part, we provide a unified framework for the incentivized elicitation of subjective
probability distributions with binarized scoring rules2 (Harrison et al., 2014; Hossain and Okui,
2013; Schlag and van der Weele, 2013; Smith, 1961). A common procedure is to divide the real
line into intervals and elicit the discrete distribution on those intervals. This elicitation can be
incentivized with the widely applied quadratic scoring rule (QSR) (Costa-Gomes et al., 2014; Huck
and Weizsäcker, 2002; McKelvey and Page, 1990; Nyarko and Schotter, 2002; Offerman et al., 2009;
Palfrey and Wang, 2009; Rutström and Wilcox, 2009). The obtained interval probabilities (IP)
identify the cumulative distribution function (CDF) at the pre-defined interval thresholds. We
generalize this procedure and show that any bounded density can be elicited without pre-defined
intervals.

It is often argued that it is preferable to incentivize belief elicitation (e.g., Blanco et al., 2010;
Gächter and Renner, 2010; Harrison, 2014; Schlag et al., 2015). The literature provides several
elicitation mechanisms that reveal (aspects of) subjective probability distributions about real-valued
variables (Demuynck, 2013; Harrison et al., 2015; Hossain and Okui, 2013; Qu, 2012; Schlag and
van der Weele, 2013). While elicitation mechanisms can be theoretically equivalent, they have
different psychological implications and experimental evidence for the applicability of different
methods is context dependent (Schlag et al., 2015; Schotter and Trevino, 2014; Trautmann and
van de Kuilen, 2015).

For events, no simple linear scoring rule truthfully elicits the event probability. For subjective
probability distributions on the real line, however, linear incentives identify pre-defined CDF levels.
We propose to elicit multiple point predictions (MPP) with asymmetric linear incentives to identify
quantiles of the subjective probability distribution. We show that MPP can be used to elicit points
of the subjective CDF under probabilistically sophisticated preferences (Machina and Schmeidler,
1992). While IP allow to choose at which outcome levels the CDF is revealed, MPP allow to choose

1Manski (2018) and Delavande et al. (2011) review examples in macro and development economics.
2Also referred to as binary lottery procedure.
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at which probability levels the CDF is revealed. Without anchors or explicit probabilistic state-
ments3, MPP provide essentially the same amount of information about the subjective probability
distribution as IP.

The intuition behind point predictions is rather natural. On a regular basis we encounter
uncertainty such as “How many days will I need to finish the project?”. We commonly express
our beliefs in point estimates (e.g., “I need 10 days.”) instead of probabilities (“There is a 50%
chance that I need less than 10 days”). Moreover, the consequences of over- or underestimation
might be rather different. If finishing one day too late is more costly than one day too early, we
would express a higher estimate (“12 days.”). If instead finishing a day early is more costly than
a day late, we would express a lower estimate (“8 days.”). Applying MPP, we rely on the same
intuition. Each point estimate influences the payout in a simple linear relationship. By varying the
asymmetry between under- and overestimation, we can elicit different quantiles of the underlying
subjective probability distribution. We argue that point predictions allow to construct a relatively
intuitive elicitation mechanism.

Our method overcomes several potential caveats of currently used methods: Many methods
require individuals to communicate their beliefs in probabilistic form. Whereas expert forecasters
may have little difficulties communicating in probabilistic form, most populations (e.g., high school
students) may struggle when asked for IP. Outside of the lab, individuals rarely communicate their
beliefs in that way. Simple point predictions, however, were criticized for being uninformative
about the uncertainty (Engelberg et al., 2009). MPP allow convenient communication and reveal
uncertainty.

Moreover, IP can be influenced by bin effects (Benjamin et al., 2017) and insufficient adjust-
ments from anchors (Jacowitz and Kahneman, 1995; Tversky and Kahneman, 1975; Wright and
Anderson, 1989). Especially for non-expert respondents that are less familiar with the subject these
effects may lead to distorted reports. The choice of intervals may influence the reported subjec-
tive probability distribution. Therefore these intervals have to be chosen carefully. If beliefs vary
strongly across participants, uniformly adequate intervals may be hard to find. Individual specific
adaptation of intervals, on the other hand, can influence responses and complicate comparisons
across individuals.

Finally, incentivized reports are often based on complex payoff functions (e.g., proper scor-
ing rules) (Brier, 1950; Winkler, 1967). Some procedures show payoffs contingent on outcomes,
which allows respondents to explore the incentive structure (Harrison et al., 2014; Holt and Smith,
2016). Other procedures explicitly tell participants that it is optimal to report their “true beliefs”.
This recommendation of optimality is debatable, as it depends on decision theoretic assumptions

3We call reports “probabilistic” if they are in the form of a probability distribution.
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(compare Offerman et al., 2009).
To provide the theoretical foundations for MPP, we build on the seminal work in Hossain and

Okui (2013) and extend binarized scores to the elicitation of the entire density (see Proposition 1)
and multiple quantiles without assuming bounded support or limiting tail behavior (see Theorem
1). Under simpler preferences, related scoring procedures have been considered in Jose and Winkler
(2009) and Fissler and Ziegel (2016). Further, extreme asymmetric linear incentives can reveal the
minimum and maximum of the distribution (see Proposition 3). To the best of our knowledge,
that is the first mechanism that reveals a non-elicitable property (Bellini and Bignozzi, 2015) with
binarized scoring rules. Finally, we discuss why MPP often provides sharper bounds on the CDF
than IP (see Section 2.4).

In the second part of the paper, we present an experimental application of belief elicitation by
MPP, and compare it to the elicitation of IP. For the sake of comparability, we incentivize the IP
reports with the QSR and apply binarized scores for both methods. In a laboratory experiment,
we elicit subjective probabilities over five different real-valued outcomes. The domains differ in the
level of complexity and cover symmetric and skewed distributions, ambiguity and skill-based assess-
ments. Despite the fact that the two mechanisms predict identical responses under probabilistically
sophisticated preferences, we find strong evidence for differing response behaviors. Using various
evaluation criteria, we conduct a thorough analysis of the advantages and disadvantages of both
elicitation methods.

In forecasting, the elicited subjective distributions should be informative about the unknown
outcome. We define calibration and accuracy in a joint probability space that contains elicited dis-
tributions and the uncertain outcome. Specifically, we test first and second order calibration using
the Probability Integral Transform (PIT) (Dawid, 1984; Diebold et al., 1998), and compare the
information content and accuracy of the elicited distributions with the Continuous Ranked Prob-
ability Score (CRPS) (Gneiting and Raftery, 2007; Matheson and Winkler, 1976). Both measures
are easily interpretable and consider the whole distribution.

The elicited distributions reveal systematic biases that depend on the application as well as the
elicitation procedure. While the elicitation of IP leads to overconfident (too narrow) probability
distributions, elicitation of MPP shows no evidence for such miscalibration. Distributions obtained
from MPP are biased for some applications. This bias is less severe for IP. We further find that the
distributions elicited by MPP are slightly more consistent with subsequently recorded behavior. Fi-
nally, we find that uninformed participants report more accurate beliefs with IP, and that informed
participants with heterogeneous beliefs report more accurate beliefs with MPP. These results are
consistent with the interval thresholds functioning as anchors for uninformed participants. With
regard to applicability, participants that reported beliefs with MPP required less time and were
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more likely to react positively to subjective perception questions after the experiment.
In a concurrent paper, Palley and Bansal (2019) provide a related experimental comparison

by explicitly eliciting quantiles. We rely on a more intuitive framing using MPP. Further, we
analyse calibration and accuracy in a more general framework based on the realized value instead of
empirical marginal distributions. We argue that, whenever available, objective Bayes probabilities
should be used. However, except for experimentally constructed domains, there rarely exist valid
Bayes probabilities. In this case, the comparison with the realized value is a valid benchmark at
the cost of additional noise and technicality. Conveniently, the same analysis can be mirrored in
economic applications when individual specific realizations are available.

In the following section, we provide theoretical background on property elicitation and discuss
how to recover probability distributions after eliciting CDF points. Section 3 describes the ex-
perimental design. Results are provided in Section 4, followed by a discussion in Section 5. The
appendix contains a more technical treatment, proofs, and additional results. An online supple-
mentary document is available with additional details and a description of the experiment.

2 Theory of Property Elicitation
In this section we review the theoretical background of the elicitation of subjective probability
distributions with binarized scoring rules. Consider the task of eliciting an agent’s belief about a
real-valued random variable y. A state of belief is represented by a subjective probability P, which
is defined as a CDF –or equivalently a density– on the outcome space R of y.

We elicit specific properties T (P) of the subjective probability (e.g., a quantile or the likelihood
of an interval) with the following procedure. The agent chooses a report x from the report space
X . After observing the random variable y, the agent is remunerated based on the scoring rule s,
which is a function of the outcome y and the issued report x. Specifically, the agent receives a prize
if the score s(x, y) exceeds a uniformly distributed random variable with suitably chosen support.

We assume that the agent has no other stakes concerning the random variable y and acts proba-
bilistically sophisticated. See Regularity Conditions 1 in the Appendix for details.4 The remainder
of this section tackles the question which properties of the distribution can be elicited by the mech-
anism above and how the reports (partially) identify the subjective probability distribution P. We
call an elicitation method incentive compatible for a property T if the optimal report of an agent
with subjective probability P is T (P). Further, a series of elicitation methods is called essentially

4We note that there is mixed empirical evidence on binarized incentives inducing risk neutral behavior
with Cox and Oaxaca (1995) and Selten et al. (1999) providing evidence against and Harrison et al. (2013,
2015) and Hossain and Okui (2013) providing evidence for the validity of the procedure.
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incentive compatible if the optimal report of an agent converges to T (P). Thus, essentially incentive
compatible mechanisms allow to elicit a property with an arbitrary degree of accuracy.

Hossain and Okui (2013) provide an essentially incentive compatible mechanism for the mean
under tail assumptions. They also construct a generic incentive compatible mechanism for every
property with bounded scoring rules. Schlag and van der Weele (2013) show examples for several
properties, including the quantile assuming bounded support. In Section 2.2, we add a straight
forward extension to reveal the entire density. In Section 2.3, we focus on MPP and show that our
mechanism is essentially incentive compatible for multiple quantiles simultaneously without assum-
ing bounded support or restricting tail behaviour. Additionally, we show that extreme quantiles can
be used to construct essentially incentive compatible mechanisms for the minimum and maximum
of the distributions. Thus, we provide the first case of revealing properties with binarized scores
that are generally not elicitable (Bellini and Bignozzi, 2015).

2.1 Eliciting Interval Probabilities

Let us consider the most prominent example for the elicitation of a property: interval probabil-
ities. The common approach is to choose some thresholds c1, . . . , cn−1 that define the respective
property Tc(P) = (P(y ≤ c1),P(c1 < y ≤ c2), . . . ,P(y > cn−1)) and to apply the QSR for dis-
crete probabilities. The eligible reports are probability vectors for n possible outcome values,
X := {x ∈ [0, 1]n|

∑
i xi = 1}. After issuing the report x = (xi, . . . , xn) and observing the outcome

y in the kth interval, the agent wins the prize if the QSR for multiple events,

s(x, y) = 2xk −
∑
i

x2
i + 1, (1)

exceeds a uniformly drawn random variable with support [0, 2]. This elicitation mechanism is
incentive compatible for the discrete probability distribution Tc (Winkler, 1967). Note, however,
that this procedure does not reveal the entire distribution P. We refer to this method as elicitation
of interval probabilities.

2.2 Eliciting the Entire Probability Distribution

We show how to elicit the entire probability distribution using a continuous generalization of the
QSR (Matheson and Winkler, 1976). The report space X contains probability density functions.
We assume that the eligible distributions have bounded densities with some bound B. Given a
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reported density function p(·), we compute the score as

s(p, y) = 2p(y)−
∫
R
p(w)2dw +B.

Subsequently, we draw a uniformly distributed random variable on [0, 3B]. The agent receives a
fixed payoff if the score exceeds the random draw.

Proposition 1 (density). The mechanism described above is incentive compatible for the probability
density function.

Up to technicalities, the proposition follows from the properness (Gneiting and Raftery, 2007)
and boundedness of the score (Hossain and Okui, 2013, Theorem 1). An elementary proof is given
in Appendix A.

With Proposition 1 any property could be elicited indirectly by eliciting the density and sub-
sequently calculating the respective property. However, the communication of a whole distribution
can be burdensome, or impossible, without parametric assumptions and the involved scoring rule
is complex.

2.3 Elicitation of Multiple Point Predictions

Instead of probabilistic reports, we propose to elicit multiple point predictions. Each prediction
is incentivized by a different linear scoring rule, which allows to infer quantiles of the underlying
distribution. While the quantile is a rather complex concept, there exist simple linear proper
scoring rules. In contrast, interval probabilities are simple concepts, that can only be incentivized
by complex scoring rules (like the QSR). A key element of our approach is to focus the participant’s
attention on the payoff function. The probabilities are subsequently inferred by the researcher. In
doing so, MPP do not require the participant to understand formal probability concepts, nor to
communicate in probabilistic statements.

For each point prediction x the payoff depends on the distance between x and the true outcome
y. In particular, this difference is multiplied by a positive factor a or b, depending on whether the
individual underestimates or overestimates, and then deducted from an initial endowment e.

s(x, y)a,b =

e− a · |x− y| if x ≤ y (underestimation),

e− b · |x− y| if x > y (overestimation).
(2)

Under this scoring rule the expected score maximizing strategy is to report the quantile of P with
level α = a

a+b (Schlaifer and Raiffa, 1961). If the payoff consists of lottery tickets, the incentive
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structure is robust beyond risk neutrality (Hossain and Okui, 2013; Schlag and van der Weele,
2013).

Similar incentives (without binarized scores) framed as prediction tasks have been used in the
experimental literature before. Dufwenberg and Gneezy (2000) and Kirchkamp and Reiß (2011)
use the symmetric version with a = b of the linear scoring rule in Equation (2) which is incentive
compatible for the median.5 Charness and Dufwenberg (2006) and Sapienza et al. (2013) use the
score s(x, y) = 1(|x−y| < d) which is incentive compatible for the midpoint of the modal interval of
length d. This scoring rule obtains only two possible values and is therefore robust to risk attitude
without binarizing. A single point forecast, however, does not allow to do meaningful inference on
the subjective probability distribution.

The following theorem shows how to elicit multiple quantiles simultaneously. Let α = (α1, . . . , αn)
be a vector of n different quantile levels on the unit interval (0, 1). We choose appropriate positive
numbers ai, bi such that αi = ai

ai+bi
. For each level the participant issues a point estimate xi.

Subsequently, the final score is computed by summing up the positive values of each single score,
i.e.,

sα(x, y) =
n∑
i=1

max(sai,bi
(xi, y), 0). (3)

The agent receives a fixed payoff if the score exceeds a uniformly distributed random draw on
[0, ne].

Theorem 1 (multiple quantiles). Assume that the agent has a subjective probability with strictly
positive density.

(i) For large e the mechanism above is essentially incentive compatible for the quantiles with
levels αi, . . . , αn.

(ii) Consider a given point prediction x∗i . If the mass of the tail intervals can be bounded by
P0(y < x∗i − e/bi) < c1 and P0(y > x∗i + e/ai) < c2, the mechanism is incentive compatible
for the quantile with level α∗i such that

c2αi < αi − α∗i < c1(1− αi).

See Appendix A for details. To avoid eliciting distorted quantiles, the initial endowment e has
to be chosen large enough to result in positive scores for every value of y with positive subjective
probability. In applications, a smaller value of e might be desirable to increase the incentives to
exert effort. Point (ii) of Theorem 1 allows to bound the error in terms of the probability level.

5Haruvy et al. (2007) apply a piecewise constant version of the linear symmetric incentives, which incen-
tivizes a report that deviates slightly from the median.
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Under bounded support, Theorem 1 implies a multiple quantile version of the well-known result
that asymmetric linear loss functions with binarized scores are incentive compatible for a quantile
(e.g., Schlag and van der Weele, 2013).

Proposition 2 (bounded support). If the agent has a subjective probability with bounded support
of length B and e > Bmax(a1, b1, . . . , ak, bk),the mechanism described above is incentive compatible
for the quantiles with levels α1, . . . , αn.

The minimum and maximum of a distribution are generally not elicitable (Bellini and Bignozzi,
2015). However, the following proposition shows that they are essentially elicitable in the sense
that they can be approximated by extreme quantiles. We propose to elicit a set of extreme quantile
levels (e.g., α = (0.1, 0.01, 0.001)).

Proposition 3 (minimum). For large bi and large e
bi
, the mechanism above is essentially incentive

compatible for the minimum of the distribution.

Note that for subjective probabilities with infinite support the minimum may be −∞ in which
case the best responses also diverges. Analogously the maximum can be approximated with levels
close to one (e.g., α = (0.9, 0.99, 0.999)). See Appendix A for details.

2.4 Partial Identification and Bounds

The quantile reports x = (x1, . . . , xn) from MPP for levels α = (α1, . . . , αn) allow to infer about the
subjective probability P, that αi = P(y ≤ xi) for i = 1, . . . , n. This coincides with the information
obtained when eliciting IP with thresholds c = x on the n + 1 intervals (−∞, x1], . . . , (xn,∞).
By design, MPP allow to fix the probability levels αi and IP allow to fix the thresholds ci. Both
essentially reveal the same amount of information about the subjective probability distribution.

The subjective probability distribution P is only partially identified. However, we obtain the
set of distributions that is consistent with the elicited CDF points and bounds on properties of
interest (compare Bissonnette and de Bresser, 2018; Engelberg et al., 2009).

In Figure 1, we see an example of CDF points that can be identified by IP with interval thresh-
olds c = (−12,−6, 0, 6, 12). The example is loosely based on the Survey of Consumer Expectations
(Armantier et al., 2017) by the Federal Reserve Bank of New York that elicits the expected per-
centage change of earnings in one year.6 The grey area bounds the set of consistent CDFs.7

6The actual thresholds are c = (−12,−8,−4,−2, 0, 2, 4, 8, 12). For another example of unincentivized
elicitation on pre-defined intervals see the inflation and output growth forecasts in the Survey of Professional
Forecasters (Croushore, 1993).

7For the ease of exposition we abstract from rounding or the bounds derived in Theorem 1. The more
general framework would allow to infer that P(y ≤ xi) ∈ [αi − ci, αi + Ci] for suitable bounds ci and Ci.
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Figure 1: Elicited CDF points and the space of consistent CDFs. In this example five
CDF points were elicited with IP on the interval thresholds c = (−12,−6, 0, 6, 12) , and the elicited
probabilities are (0, 0.1, 0.4, 0.3, 0.2, 0). The space of consistent CDFs is denoted by any weakly
increasing function that crosses the five given black dots. The possible CDF values are depicted as
gray rectangulars.

0
−12−6 0 6 12−25 25

x

pd
f

0

1

−12−6 0 6 12−25 25

IP

0

1

−12−6 0 6 12−25 25

M
P

P

0
−12−6 0 6 12−25 25

x

pd
f

0

1

−12−6 0 6 12−25 25

IP

0

1

−12−6 0 6 12−25 25

M
P

P

0
−12−6 0 6 12−25 25

x

pd
f

0

1

−12−6 0 6 12−25 25

IP

0

1

−12−6 0 6 12−25 25

M
P

P

Figure 2: Elicited CDF points and the space of consistent CDFs for three examples.
Each column contains the true belief as pdf in the first row, and the elicited CDF points and the
space of consistent CDFs in the second and third row for IP with c = (−12,−6, 0, 6, 12) and MPP
with α = (0.05, 0.25, 0.5, 0.75, 0.95) respectively. The black line depicts the true pdf in the first row
and the true CDF in the second and third row.
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It is a core feature of the quantile reports that they are automatically distributed over the mass
of the distribution as wished by the elicitor. In elicitation of IP, the support of the subjective
distribution might be located outside of the elicited intervals, or the whole support might be
located in one single interval. As an example, we consider three individuals with different beliefs
in Figure 2. The individual in the first column perceives significant uncertainty about her earnings
but expects on average no changes. The IP thresholds are well suited to identify this belief.
The second individual is more optimistic and more certain about future earnings. With IP the
elicitor obtains no information about the CDF shape in the interval [0, 6]. Asking for MPP the
elicitor obtains no information about the tails of the CDF. The third individual expects more than
12% income rise. IP provide no information about the expectations beyond 12%. MPP do not
allow to bound the CDF from below. In summary, the examples show that MPP can adapt more
flexibly to heterogeneous beliefs, but cannot bound the tails of the CDF beyond the elicited levels
without additional assumptions. Proposition 3, however, guarantees that the extreme points of the
distribution can be approximated with extreme quantiles.

Let us consider bounding other properties, e.g. the mean, median or interquartile range. Any
property that is monotone with respect to stochastic dominance (e.g., the mean or the median),
can be bounded easily by the respective property for the CDF that dominates and is dominated
by all other consistent CDFs (illustrated in Figure 1). In the following we analyze which method
provides sharper bounds. We assume that the support of the distribution is bounded.8 For the
mean property, it follows from linearity arguments that the bounds after eliciting IP and MPP are
equally sharp. The median property is uniquely identified by MPP, whereas IP can only identify
the interval in which the median lies. The mode property cannot be bounded without further
assumptions by either method.9

Generally, it is harder to find valid bounds on measures of dispersion.10 Conveniently, elicitation
of MPP identifies the interquantile range between the elicited quantiles. In the elicitation of IP,
quantiles are only pinned down in their respective intervals, thus the size of the bounds on any
interquantile range is either the length of the elicited intervals (if both quantiles are located in the
same interval) or twice that amount (if the quantiles are located in different intervals).

8For unbounded support, the boarder parts of the CDF would be unbounded and so would be most
properties (e.g., the mean).

9Note that Engelberg et al. (2009) require the additional assumption that the mode lies in the interval
with the highest probability to provide partial identification.

10Dillon (2016) provides results for bounding the mean and variance simultaneously allowing for imprecisely
reported interval probabilities.
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Figure 3: Elicited CDF points and parametric distributions. The fitted distributions are
illustrated as CDFs (left plot) and densities (right plot).

2.5 Parametric Assumptions

When the bounds on the subjective probability distribution are too broad, one can rely on additional
assumptions to fit unique parametric distributions to the elicited CDF points. We call the resulting
distribution a predictive distribution. We consider four commonly applied procedures that are
illustrated in Figure 3. The atoms distribution assumes a discrete distribution, where the mass is
located at the midpoint of each elicited interval11 (compare Hill, 2010; Lahiri and Teigland, 1987;
Lahiri et al., 1988). The pl distribution assumes a piecewise linear CDF (compare Diebold et al.,
1999; Guiso et al., 2002; Zarnowitz and Lambros, 1987), which is equivalent to a piecewise constant
density.

Further, we fit predictive distributions by minimizing

inf
θ

∑
i

(F (xi; θ)− αi)2,

where xi and αi are obtained by the reports and F (·, θ) is the CDF of the distribution for the
parameter θ. In particular, we fit a normal distribution (compare Boero et al., 2015; Clements,
2014; Dominitz and Manski, 2011; Giordani and Söderlind, 2003; Gouret and Hollard, 2011; Hurd
et al., 2011) and a beta distribution (compare Delavande, 2008; Engelberg et al., 2009; Manski and

11The outer intervals are assumed to have the same length as the neighboring interval.
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Neri, 2013; Neri, 2015).12

Figure 3 illustrates several stylized facts about the parametric assumptions: Measures of central
tendency, like the mean and median, are relatively robust to the choice of distributional assump-
tions. Measures of dispersion, like interquantile ranges or the variance, depend heavily on the
chosen fit, where the atoms distribution always has a lower variance then the pl distribution. This
simple observation challenges the common approach to construct variance estimates of the subjec-
tive distribution with only a small number of elicited CDF points. In particular, the assumption
invoked for the atoms distribution, putting all mass at the midpoints of the intervals, potentially
underestimates the uncertainty.

3 Experimental Design
In a laboratory experiment we compare belief elicitation with MPP to the standard procedure of
eliciting beliefs via IP. The experiment was based on OTree (Chen et al., 2016) and was conducted
at the Frankfurt Laboratory for Experimental Economic Research (FLEX) between December 2017
and August 2018. In total we recruited 282 subjects through the online system ORSEE (Greiner,
2004) divided into 14 sessions with 8 - 24 participants in each session. Our subject pool consisted
of German undergraduate and graduate students with a median age of 23 years, where 58% have
taken at least one university level statistics course.

3.1 Experimental Treatments

The experiment comprised four (2×2) different treatments as illustrated in Figure 4a. Each subject
was randomly assigned to one of the four treatments. In two of the treatments we elicited IP using
the binarized QSR as described in Section 2.1. In the remaining two treatments we elicited MPP
using binarized linear incentives as described in Section 2.3. Furthermore, the treatments differed
with respect to the information updates that were presented to the subjects during the experiment,
which allows to analyze the performance under different information environments.

3.2 Domains

We elicited subjective probabilities for five different fields of application. The order in which
these domains were presented varied randomly between subjects to avoid order effects. Figure

12Other distributional fits in the literature that we do not consider are the log-normal distribution (used
for income expectations in Dominitz, 2001; Dominitz and Manski, 1997; McKenzie et al., 2013), triangular
densities (Kaufmann and Pistaferri, 2009) and cubic-splines (Bellemare et al., 2012).
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(a) Experimental treatments

Elicitation of Subjective Probabilities (IP or MPP)
↓

Information Update (weak or strong)
↓

Elicitation of Subjective Probabilities (IP or MPP)
↓

Willingness to Pay
↓

Results

(b) Elicitation procedure within each domain

Figure 4: Summary of experimental treatments and elicitation procedure within each of the five
domains

4b illustrates the timeline within each domain. An explanation screen was shown first. Then,
the subjective probabilities were elicited. Next, subjects were given an information update, which
provided either weak or strong information. Afterwards, we elicited the subject’s belief again. After
the second round of belief elicitation, we elicited if participants were willing to pay a given amount
of credits13 in exchange for receiving the uncertain outcome y in credits. We use this willingness
to pay as consistency check for the elicited beliefs.

For a summary of the domains and the used information updates see Table 1. In the dice
domain, the uncertain outcome was the sum of ten virtual dice rolls. In the dots domain it was
the amount of dots shown on the computer screen. The true value was randomly chosen between
150 and 250. The number domain exhibited a randomly chosen number between 0 and 99. In
the more complicated ball domain, we virtually presented an urn with 60 balls, numbered from
1 − 60. As a second step, we blindly drew 10 out of these 60 balls without replacement and put
them into another urn, without showing the result to the participants. Next, we drew three balls
with replacement from the second urn and showed them to the participants before putting them
back into the urn. Finally, the participants were asked to estimate the number on the fourth ball
that was drawn from that second urn. In the temperature domain subjects were asked to report on
the highest temperature in Frankfurt of a particular day in 2016.

Whereas the ball domain should induce asymmetric beliefs, the dice domain and number domain
should induce symmetric beliefs. These domains are inherently random. In comparison, the dots
domain is skill/effort-based. Finally, the temperature domain is closest to a real life forecasting
task.

13Offers were uniformly distributed around the unconditional mean of the uncertain outcome y, i.e. on
the interval [0.9E[y], 1.1E[y]].
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Domain Weak Update Strong Update
Dice: Sum of ten dice rolls Two dices Six dices
Dots: Number of dots Comparison with small rectangle Comparison with similar sized rectangle
Number: Random number (0-99) Second digit First digit
Ball: Urn draw of numbered balls (1-60) One additional draw Six additional draws
Temperature: Past temperature in Frankfurt Temperature one week before Temperature one week & one day before

Table 1: Information Updates

3.3 Belief Elicitation in Detail

With both methods, we elicited three CDF points. In the IP treatments, we elicited the four
probabilities simultaneously:

What do you think is the percentage chance that y is smaller than c1?
What do you think is the percentage chance that y is between c1 and c2?
What do you think is the percentage chance that y is between c2 and c3?
What do you think is the percentage chance that y is larger than c3?

The thresholds (c1 to c3) were fixed within each domain and were chosen to divide the attainable
values into four equally sized segments. The amount of credits earned was calculated using a rescaled
version of Equation (1) such that each credit represented a 0.5 percentage chance of winning an
extra 10e if that round of belief elicitation was drawn for payoff in the end.

In the MPP treatments, we elicited three point forecasts simultaneously:

What do you say is y,. . .
. . . if underestimation is three times less costly than overestimation?
. . . if overestimation and underestimation are equally costly?
. . . if overestimation is three times less costly than understimation?

For all three questions, the credits earned were calculated using the linear scoring rule from Equation
(2). Varying costs for over- and underestimation is equivalent to choosing different parameters for
a and b. Here, we chose the parameters for a and b such that the 0.25-quantile, the 0.5-quantile,
and the 0.75-quantile were elicited. For details on the experiment and instructions, see the online
supplement.

4 Results
We analyze several outcome measures Z. All results are based on simple averages or differences in
means within each domain (and information update) separately. To provide some robustness with
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respect to the chosen fits, we consider all fitting methods described in Section 2.5. Here, we only
show the best performing fit for each treatment. See Appendix B for the full set of results.

There are two major applications of subjective probabilities in economics. First, they can be
used as forecasts or prior distributions in Bayesian analysis (Garthwaite et al., 2005; O’Hagan
et al., 2006). Second, they are used as input in decision-theoretic models to explain behavior under
uncertainty (Manski, 2004). We denote the two different applications as forecasting and economic
modeling. Forecasting strives to accurately describe the unknown outcome, whereas in economic
modeling the subjective probabilities should accurately represent the belief of an agent.

A common approach for the evaluation of elicitation mechanisms is the comparison of the
resulting subjective probabilities with objective probabilities (Schlag et al., 2015, Table 1). However,
many applications of interest do not allow for valid objective probabilities, because the conditional
distribution of the uncertain outcome - given the information set of the participant - cannot be
stated. Consequently, the predictive distributions cannot be compared to valid objective probability
distributions.

Figure 5 depicts a comparison between the reported subjective CDF values and the objective
Bayes CDF values. This kind of analysis is not possible for the temperature or dots domain, where
no natural Bayes probabilities are available. Arguably, most uncertain entities in economics have
such an ambiguous character. The linear fits provide first suggestive evidence for overconfidence of
the IP reports in the ball and the number domain and for underconfident MPP reports in the dice
domain. In the following we provide a more general analysis of first and second order biases based
on the PIT that does not require the existence of valid Bayes probabilities.

Instead, we understand the outcome y and the predictive distribution P as realizations in a
joint probability space14. This allows us to analyze calibration and accuracy without unduly strong
assumptions on the data generating process.

4.1 Calibration

We begin with an analysis of the calibration of the obtained predictive distributions. Calibra-
tion refers to the statistical consistency between the predictive distribution and the observation
(Gneiting et al., 2007). A sample of predictive distributions P is called calibrated for y, if each P
constitutes the conditional distribution of y given some (unknown) information set.15

14The idea goes back to DeGroot and Fienberg (1983); Murphy and Winkler (1987). See Gneiting and
Katzfuss (2014) for a recent review.

15No assumptions are made on the variables that construct the information set. Lichtendahl et al. (2013)
and Hora (2004) use closely related definitions of calibration that do not consider information sets. A similar
analysis with additional structure on the information environment can be found in Grushka-Cockayne et al.
(2016).
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Figure 5: Comparison with Bayesian distributions. For the IP treatment, the reported
probabilities are plotted against the Bayes probabilities at the elicited threshold levels. For the
MPP treatment, the elicited quantile levels are plotted against the reported quantile levels of the
Bayes distribution. Throughout, the Bayes distribution is computed based on the individual and
time specific information. Linear fits with slopes smaller (larger) than the slope of the dashed line
suggest overconfidence (underconfidence).

While the calibration of point forecasts could be assessed with a simple analysis of the forecast
error, predictive distributions require a more sophisticated approach. We propose to analyze cali-
bration with the first and second moment of the Probability Integral Transform (PIT), where the
first moment reflects bias in position of the distribution (optimism and pessimism) and the second
moment in spread of the distribution (overconfidence and underconfidence). The PIT is defined as
the probability that the predictive distribution P assigns to the interval below the realized outcome
y:

PIT (P, y) = P((−∞, y]).

If the predictive distributions are calibrated, the PIT is uniformly distributed between zero and
one (Diebold et al., 1998; Gneiting and Ranjan, 2013). If the outcome is consistently larger than
postulated by the predictive distribution, the average PIT is close to one. If the outcome is
consistently smaller, the average PIT is closer to zero. We call a sample of predictive distributions
first order calibrated if the average PIT is equal to 1

2 . First order calibration is a necessary condition
for calibration.

Figure 6 depicts the average PIT. All results are transformed such that a coefficient of zero
indicates first order calibration. A value of 0.5 indicates that the whole probability mass is un-
derestimating and a value of −0.5 implies that the whole probability mass is overestimating the
realized value. We can reject first order calibration in the dots and temperature domain for the
MPP treatment. The strong information update erases the bias in the temperature domain. The
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Figure 6: First-order calibration. The target variable is Z := PIT (P, y)− 0.5. Throughout, the
error bars show 95% confidence intervals. Participants are pooled in the first round of elicitation
(first), and distinguished after receiving the information update (weak and strong).

IP treatment shows no evidence against first order calibration. The observed pattern is consistent
with the intervals providing helpful anchors in the first round that alleviate biases in perception.
The results after the information update suggest that the first order miscalibration in the MPP
treatment can be reduced by additional information.

A similar analysis of the variance of the PIT can be used to analyze if predictive distributions
over- or underpredict uncertainty. If the outcome is consistently more extreme (smaller or larger)
than postulated by the predictive distribution, the PIT is more likely to be close to either zero or
one. If the outcome is consistently less extreme, the PIT is on average closer to 0.5. A uniformly
distributed PIT has variance 1

12 . We call a sample of predictive distributions second order calibrated
if the variance of the PIT is equal to 1

12 . Predictive distributions that are overconfident (too narrow)
have a larger PIT variance, predictive distributions with an overly wide spread have smaller PIT
variance.

Figure 7 shows the transformed variance of the PIT. A value of 0 denotes a well-calibrated
second moment of the PIT. A value of −1 is obtained for the minimal PIT variance of 0 and
a value of 1 would imply that the variance of the PIT is twice as large as under second order
calibration. In general, second order calibration is less robust with respect to the chosen fit than
first order calibration. (See Figure 11 and Table 4 in Appendix B for results depicting all fits
simultaneously.)

In line with other studies, elicitation of IP lead to overly confident predictive distributions16,
16A fact referred to as overconfidence, or more specifically as overprecision (compare Alpert and Raiffa,
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Figure 7: Second order calibration. The target variable is Z := 12(PIT (P, y) − m̂(d))2 − 1,
where m̂(d) constitutes the estimated mean for each domain and information update. A positive
value indicates overconfidence.

with many domains indicating variances that are at least 25% larger than under calibration even
after choosing the most suitable fit. This overconfidence seems to be absent for the elicitation of
MPP. The information updates do not seem to affect this result. Figure 7 shows consistent evidence
for overconfidence in eight out of fifteen domains for the IP treatment and in no domain for the
MPP treatment. Several mechanisms could explain this difference in overconfidence. The four
applied fits might not be sufficiently flexible. Further, probability assessments of outer intervals are
prone to rounding towards zero and thereby underrepresenting uncertainty. Finally, participants
may simply report more focused probabilistic statements (for IP) than indirectly inferred from their
behavior (for MPP).

To sum up, MPP are more prone to first order miscalibration for uninformed participants. Under
additional information, the first order calibration improves. Considering second order calibration,
IP reports are prone to overconfidence. This does not apply to MPP reports.

At this point it is worth noting that the calibration analysis above considers different elicitation
and fit methods for a random participant and a specific domain. As each participant encountered
each domain only once, we cannot evaluate the calibration of one specific participant in one specific
domain, nor can we make a statement for real economic decisions without additional assumptions.
The observed miscalibration is, for example, perfectly consistent with participants following some
rule of thumb that is calibrated across the relevant decisions in daily life, while being uncalibrated
at the specific tasks encountered in our experiment.

1982; Brenner et al., 1996; Fox and Clemen, 2005; Haran et al., 2010; Lichtenstein and Fischhoff, 1977).
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Figure 8: Difference in accuracy. The target variable is denoted as Z := CRPS(P, y). The plot
depicts differences in average scores for the best performing fit divided by the average score in the
IP treatment, so that negative values indicate superior accuracy of MPP.

4.2 Accuracy

Accuracy and calibration are different concepts, which do not necessarily agree as to which elici-
tation method performs best. An elicitation method can provide perfectly calibrated distributions
that provide little useful information because they lack sharpness. We evaluate accuracy with proper
scoring rules that can assess sharpness and calibration simultaneously (Gneiting and Raftery, 2007).
Among calibrated distributions, larger information sets imply lower17 expected scores (Holzmann
and Eulert, 2014). Thus, average scores can rank elicitation methods in terms of their information
content.

We argue against using local proper scoring rules like the logarithmic score that are unstable
with respect to the distributional assumption as they depend only on the density at the realized
value. Instead, we propose to use the Continuous Ranked Probability Score (CRPS) which can be
stated with α-quantiles qα(P) of the predictive distribution (Laio and Tamea, 2007) as

CRPS(P, y) =
∫ 1

0
(qα(P)− y)(1(y ≤ qα(P))− α)dα.

This lends the CRPS a convenient interpretation: The CRPS depicts the average proper linear
score across the quantiles of the predictive distribution. As such, lower values indicate supreme
accuracy and for predictive distributions that put all mass on one point, the CRPS reduces to the
absolute error.

The average CRPS is depicted in Figure 8. Before the information update both methods seem
17Note that we use positively oriented scores for elicitation in Section 2 and will use negatively oriented

scores for comparing predictive performance in the following.
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to provide equally accurate predictive distributions, except for the dots domain, where the first
moment miscalibration analyzed in Section 4.1 translates into worse scores for MPP. After the
information update, the evidence suggests that MPP provide at least equally accurate predictive
distributions for all but the dots domain. In most domains, the difference in accuracy is more
favorable for MPP under more heterogeneous information (after the strong information update).
Arguably, IP could potentially benefit here if thresholds adapted to the current information.

To summarize, the first order miscalibration analyzed in Section 4.1 led to less accurate beliefs
in the dots domain. In all other domains, MPP provided at least as accurate beliefs. Throughout,
strong information was positively correlated with the relative performance between the MPP and
IP reports.

Thus, in terms of both, calibration and accuracy, MPP performed well under heterogeneous
information sets. This is consistent with the argument that pre-defined intervals act as anchors,
which improves accuracy for uninformed participants. Under increasing information those anchors
are less helpful (or even distorting). Consequently, eliciting MPP should be considered whenever
it is challenging to construct intervals that are uniformly adequate across all participants.

4.3 Consistency with Willingness to Pay

For economic modelling an elicitation mechanism should provide accurate evidence on the belief
of an agent. The elicited probabilities cannot be compared to the unobservable beliefs. However,
a natural benchmark arises if we use the subjective probabilities to predict behavior based on a
decision-theoretic model. A well-behaved elicitation mechanism provides accurate predictions of
economic action. In our experiment we elicited if the participant is willing to pay a certain amount
of credits for the unknown outcome. As described in Section 3.2, we offered the participants an
amount of credits in exchange for receiving the uncertain outcome y in credits after the second
round of belief elicitation.18

Figure 9 depicts the difference in average consistency. On average both elicitation methods
provide a high consistency rate of about 50% to 85% across both elicitation methods (compare
Figure 13 in Appendix B). No consistent pattern arises after the weak information update. After
the strong information update, the beliefs elicited with MPP were 5% to 20% more likely to be
consistent with subsequent behavior.

18Several studies find that belief elicitation can influence subsequent action (Croson, 1999, 2000; Erev
et al., 1993; Gächter and Renner, 2010; Rutström and Wilcox, 2009), whereas others could not detect this
effect (Costa-Gomes and Weizsäcker, 2008; Nyarko and Schotter, 2002; Wilcox, 2006). Our setting does not
allow to test if elicited beliefs are consistent with behavior that would have occurred in the absence of the
elicitation procedure. We find, however, no significant deviations in the willingness to pay between the two
different elicitation mechanisms.
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Figure 9: Difference in consistency with willingness to pay. The plot depicts the average
difference between the best performing fits in the ratio of consistent behavior normalized by the
consistency rate in the IP treatment, where positive values indicate superior consistency of MPP.
The subjective distribution and the willingness to pay decision are consistent, if the mean of the
predictive distribution is above the offer and the offer was accepted or if the mean is below and the
offer was rejected. Otherwise, the responses are inconsistent.

Table 2: Perception of experiment

MPP IP Difference p-value
How mentally exhausting did you find the experiment? 0.09 0.31 -0.22 0.13
How difficult did you find your tasks in the experiment? 0.02 0.28 -0.26 0.06
How insecure did you feel during the experiment? -0.07 0.36 -0.43 0.01
How stressed did you feel during the experiment? -0.77 -0.47 -0.29 0.07
How bored did you feel during the experiment? -0.97 -1.09 0.12 0.38
How relaxed did you feel during the experiment? 0.51 0.44 0.08 0.58
How content did you feel during the experiment? 0.51 0.17 0.35 0.01
The responses are encoded by Not at all (-2), Almost not at all (-1), Not sure/Neutral (0),
Quite a bit (1), and Very much (2). The MPP and IP columns indicate average values across
all participants (n = 282). The p-values are derived from an unpaired two-sample t-test with
two-sided alternative.

4.4 Applicability

Finally, we compare the applicability of the elicitation methods. The participants spent on average
28 minutes on the whole survey, where MPP participants were 9% faster (p-value < 0.01). For the
first probability elicitation, IP subjects took on average 96 seconds and MPP subjects were 25%
faster (p-value < 0.01). For the last probability elicitation IP took on average 47 seconds and MPP
was 11% faster (p-value = 0.12). Thus, MPP was faster for unexperienced participants and the
advantage reduced when applying the same mechanism multiple times.

Table 2 shows the treatment’s impact on subjective perception questions elicited after the
experiment. On average MPP participants reported that the experiment was less difficult, and
stated to have felt less insecure and stressed and more content during the experiment. Overall, the
experience seems to be more convenient with MPP elicitation, an important property for preventing
drop-outs and ensuring high take-up rates in panel data sets.
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5 Discussion
Cognitive abilities to assess beliefs in form of subjective probability distributions were found to
be limited (Hogarth, 1975). This renders elicitation burdensome and threatens the validity of
probabilistic statements in economic modeling and expert forecasting altogether. Probabilistically
sophisticated preferences like subjective expected utility (Savage, 1954) postulate that agents act
“as if” they hold a belief in form of a probability distribution. However, choices can be consistent
with a probability distribution, while the agent is unable to express this distribution explicitly.

In a general framework for the elicitation of real valued beliefs, we show how to elicit the entire
subjective probability distribution, which provides more information than eliciting a discrete distri-
bution on pre-defined intervals. Acknowledging the complexity of reporting and scoring probability
distributions, we propose to use MPP with linear incentives instead. Similar to IP, this procedure
reveals a finite set of CDF points of the belief distribution. Conveniently, point predictions rely on
simple incentives, adapt flexibly to heterogeneous beliefs, and do not influence beliefs by providing
anchors through pre-defined intervals.

The bounded scores for eliciting the entire distribution or MPP can be of separate interest for
expert forecasting. A profit maximizing expert with limited liability (Carroll, forthcoming; Osband,
1989), can be properly incentivized by bounded scores. In this context, additional complexity should
be manageable, and eliciting the full density might be preferable.

The experimental evidence suggests that eliciting point predictions is convenient and reliable.
Applying a wide range of criteria, we find that both methods have their merits and drawbacks so
that an application of one or the other should be evaluated depending on the domain and objective
of the elicitation. We find that MPP is more adequate under heterogeneous beliefs that complicate
the construction of uniformly optimal pre-defined intervals. Under homogeneous beliefs and if
anchoring is desired or no concern, IP may be more suitable. In contrast to elicitation using IP,
we do not observe overconfidence (too narrow distributions) when asking for MPP, suggesting that
overconfidence may at least partly be a relic of the elicitation design, instead of an intrinsic property
of preferences. The faster elicitation and the more positive self-reported emotional reactions suggest
that MPP might be more suitable in long surveys and panels that otherwise could suffer from drop
outs.

If incentives are infeasible or the incentivized elicitation is prone to adverse effects of stakes and
hedging (Armantier and Treich, 2013), researchers commonly rely on unincentivized IP reports.
We argue that MPP can still be useful with hypothetical payoffs. In an additional experiment
presented in Appendix C, we find that such hypothetical questions provide informative reports,
which suggests that MPP is applicable in surveys. In this additional experiment, we further show
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how extreme quantile reports induce similar responses to asking for the minimum or maximum.
This paper considers probabilistically sophisticated preferences that allow beliefs to be repre-

sented by a single probability measure. For a related mechanism that considers ambiguity averse
preferences see Schmidt (2019).

We abstracted from rounding in this study. However, rounding is a common feature observed
for discrete probability questions in surveys and experiments (Bissonnette and de Bresser, 2018;
Kleinjans and Soest, 2014; Manski and Molinari, 2010). While we would expect most of the findings
on rounding to transfer to point predictions, including its useful aspects of signaling ambiguity or
skill, the negative consequences (like systematic biases in the tails) are arguably less severe.

It is possible to ask for the maximum and minimum of the support before eliciting IP. Unfor-
tunately, there exists no proper scoring rule for those properties, which disqualifies this procedure
for many applications. Nevertheless, using unincentivized maximum and minimum statements or a
single point estimate to construct intervals may improve the performance of belief elicitation using
IP.

While theoretically any number of quantile levels could be elicited, eliciting three quantiles
(e.g., at the levels of 25, 50 and 75%) seems adequate for many applications. It directly identifies
a measure of central tendency (the median) and of uncertainty (the interquantile range) without
parametric assumptions. At the same time, it requires only a reasonable amount of time and cog-
nitive capacity. If the elicitor is more interested in the tails of the distribution, other specifications
of MPP might be more suitable. It is, however, an open question if the experimental findings of our
design are robust with respect to the number and extremity of quantile levels. Another interesting
question is, how belief elicitation via MPP performs with different subject pools.
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Appendix
A Proofs
We provide formal statement of the main results. Let the state space be denoted by Ω = R× [0, 1],
where each state ω = (y, r) consists of the real valued y and some randomization device outcome
r. An event E is a subset of Ω. Let P bet the set of eligible probability measures for y on R.
Let X be the action space of the agent, and x ∈ X the report issued by the agent. A function
s : X ×R 7→ R is called a scoring rule. For any scoring rule within the binary lottery procedure in
Section 2, every report x ∈ X can be associated with a binary act MEm that pays prize M if the
event E = {(y, r) ∈ Ω | s(x, y) > r} realizes and m otherwise.

Regularity Conditions 1 (Probabilistically Sophistication (Machina and Schmeidler, 1992)).
There exists a probability measure PΩ on Ω such that for all events E and E′ and all payoffs a � b

MEm �ME′m ⇐⇒ PΩ(E) ≥ PΩ(E′),

and PΩ = P0 × U [0, 1] for some P0 ∈ P.

Regularity Conditions 1 hold for an expected subjective expectation maximizing agent, if the
unknown utility function depends only on the obtained prize and is otherwise independent of the
uncertain outcome y.

Proposition 1 (density). For absolutely continuous measures P with densities that are P0-almost
surely bounded by B ∈ R and for the scoring rule

s(p, y) = 2p(y)−
∫

Ω
p(w)2dw +B,

any element of arg maxp∈PMs(p,y)>3Brm is a density of P0.

Proof. As
∫

Ω p(w)2dw ≤
∫
ΩBp(w)dw = B and p(y) ≥ 0, it holds that s(p, y) ∈ [0, 3B]. Thus, the

agent maximizes

PΩ(s(p, y) > 3r) = Ey∼P0 [Er∼U [0,1][1(s(p, y) > 3r)]] = Ey∼P0 [1
3s(p, y)].

Consider for any density p the term

∆(p) = E[s(p0, y)]− E[s(p, y)],
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where p0 is a density of P0. It holds that

∆(p) =
∫

2p0(y)2dy −
∫
p0(w)2dw − (

∫
2p(y)p0(y)dy −

∫
p(w)2dw)

=
∫
p0(y)2 − 2p(y)p0(y) + p(y)2dy

=
∫

(p0(y)− p(y))2dy ≥ 0

If p ∈ arg maxp∈P Ey∼P0 [s(p, y)], then δ(p) = 0 and thus p = p0 Lebesgue-almost surely. Conse-
quently, p is also a density of P0.

Theorem 1 (multiple quantiles). Consider ai, bi > 0 for i = 1, . . . , n. Let P be a class of absolutely
continuous probability distributions with finite moment and strictly positive density on their support.
Consider the scoring rule

s(x, y) = 1
ne

n∑
i=1

max(si(xi, y), 0)

with

si(xi, y) =

e− ai · |xi − y| if x ≤ y (underestimation),

e− bi · |xi − y| if x > y (overestimation).
(4)

Let x∗ = (x∗1, . . . , x∗n) = arg maxx∈Rn Ms(x,y)>rm and αi = ai/(ai + bi) for i = 1, . . . , n.

(i) It holds that
x∗ → (qα1(P0), . . . , qαn(P0)) for e→∞.

(ii) Consider an optimal response x∗i . If F (x∗i − e/bi) < c1 and 1− F (x∗i + e/ai) < c2, then

x∗i = qα∗(P0)

for some level α∗ such that
αic2 < α∗ − αi < (1− αi)c1.

Proof. As 0 ≤ s(x, y) ≤ 1, the agent maximizes

PΩ(s(x, y) > r) = Ey∼P0 [Er∼U [0,1][1(s(x, y) > r)]] = Ey∼P0 [s(x, y)].

Trivially, arg maxx∈X E[
∑
s(x, y)] =

∑
arg maxxi∈Xi

E[si(xi, y)] as the score si does not depend
on xj with j 6= i. We can investigate arg maxxi∈Xi

E[si(xi, y)] for fixed i = 1, . . . , n.
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The score si is non-zero for xi − e/bi < y < xi + e/ai. Thus,

E[si(xi, y)] =
∫ xi

xi−e/bi

e+ bi(y − xi)f(y)dy +
∫ xi+e/ai

xi

e+ ai(xi − y)f(y)dy,

where f denotes a density function of P0. We denote the cdf of P0 with F and compute the
derivative

∂

∂xi
E[si(xi, y)] =

∫ xi+e/ai

xi

aif(y)dy −
∫ xi

xi−e/bi

bif(y)dy

= a[F (xi + e/ai)− F (xi)]− bi[F (xi)− F (xi − e/bi)]

= biF (xi − e/bi) + aF (xi + e/ai)− (ai + bi)F (xi)

by Leibniz rule. The first order condition is

F (xi) = biF (xi − e/bi) + aiF (xi + e/ai)
ai + bi

.

The second derivative is

∂2

(∂xi)2E[si(xi, y)] = bif(xi − e/bi) + aif(xi + e/ai)− (ai + bi)f(xi).

Case (i):
As F is a cdf, F (xi−e/bi)→ 0 and F (xi+e/ai)→ 1 for e→∞. Thus, the first order condition

implies F (xi)→ ai
ai+bi

= αi. Given our assumptions, F is strictly monotone and continuous on the
support and we can conclude that xi → qαi(P).

Consider the second order condition to show that the first order condition is sufficient. It holds
that lime→∞ f(xi − e/bi) = lime→∞ f(xi + e/ai) = 0 and

∂2

(∂xi)2E[si(xi, y)] = −(ai + bi)f(xi) < 0

as f is strictly positive on the support and an off-support xi cannot be optimal.

Case (ii):
Define the constants c1 and c2 such that F (x∗i − e/bi) < c1 and 1 − F (x∗i + e/ai) < c2. It follows
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that

F (x∗i ) <
bic1 + ai
ai + bi

= αi + c1
bi

ai + bi
= αi + c1(1− αi),

F (x∗i ) >
ai(1− c2)
ai + bi

= αi(1− c2).

Thus, the error (in terms of the quantile level) can be bounded with

αic2 < F (x∗i )− αi < c1(1− αi).

Proposition 2. If P contains only distributions with bounded support of length B and e >

Bmax(a1, b1, . . . , ak, bk), it follows that

x∗ = (qα1(P0), . . . , qαn(P0)).

Proof. If the support of f is bounded with length B then, e > Bbi guarantees that F (xi−e/bi) = 0
and e > Ba that F (xi + e/ai) = 1. In this case, the first order condition reduces to F (xi) = αi.
The second order condition holds as f(xi − e/b) = 0 and f(xi + e/a) = 0 and f(xi) > 0.

We define the minimum property

min : P 7→ Ω : P 7→ inf{x ∈ Ω |P(x) > 0},

and analogously the maximum property

max : P 7→ Ω : P 7→ sup{x ∈ Ω |P(x) > 0}.

Proposition 3. If bi →∞ and e
bi
→∞, the best response converges to the minimum of the support,

i.e.,
x∗i → min(P0).

If ai →∞ and e
ai
→∞, the best response converges to the maximum of the support.

Proof. If bi →∞ and e
bi
→∞, we observe that

F (xi) =
F (xi − e/bi) + ai

bi
F (xi + e/ai)

ai
bi

+ 1 → 0.
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As f is strictly positive the quantile for every level is unique and for every c ∈ {t ∈ R|p0(t) > 0}
there exists a level α∗ ∈ (0, 1) such that q∗α(P0) = c.

First, consider the case min(P0) = −∞. Take some c ∈ R. As F (y < c) > 0, there exists bi, e
such that the first order condition implies F (xi) < F (c) and consequently xi < c. Thus, F (xi)→ 0
implies xi → −∞.

Now consider the case of a finite min(P0). For any c > min(P0), there exists bi, e such that
αi < F (c) and consequently xi < c. As xi ≥ min(P0) for all bi, e, it follows that F (xi)→ 0 implies
xi → min(P0).

Again, we check that the second order condition is fulfilled

∂2

(∂xi)2E[si(xi, y)] = bi(f(xi − e/bi)− f(xi))− aif(xi) < 0.

It follows that
x∗i → min(F ) for bi →∞ and bi

e →∞.

A similar arguments gives x∗i → max(F ) for ai →∞ and ai
e →∞.
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B Results
This section provides the full set of results, complementing the plots in Section 4 that show the
best performing fit only. The interpretation of the results remains unaffected. Throughout, the
error bars show 95% confidence interval in figures and parentheses show the respective p-values in
tables.
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Figure 10: First-order calibration - PIT average
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The target variable is Z := PIT (P, y)− 0.5.
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Table 3: First order calibration - PIT average

IP MPP

atoms beta norm pl atoms beta norm pl
info = strong

ball -0.01(0.83) -0.02(0.66) -0.03(0.54) -0.02(0.6) -0.02(0.5) -0.01(0.78) 0(0.9) -0.01(0.75)
dots 0.02(0.68) 0.04(0.32) 0.03(0.6) 0.03(0.45) 0.2(0) 0.15(0) 0.18(0) 0.16(0)
dice -0.03(0.49) -0.06(0.06) -0.04(0.3) -0.05(0.07) -0.01(0.76) -0.02(0.57) -0.01(0.66) -0.01(0.59)

number 0.05(0.4) 0.02(0.55) 0.12(0.05) 0.03(0.38) 0.02(0.65) -0.01(0.84) 0(0.88) 0(0.98)
temperature 0(0.99) -0.03(0.32) 0(0.95) -0.02(0.46) 0.04(0.44) 0.02(0.7) 0.02(0.68) 0.02(0.58)
info = weak

ball -0.04(0.33) -0.04(0.27) -0.04(0.35) -0.04(0.26) 0.01(0.86) -0.02(0.64) -0.01(0.72) -0.02(0.59)
dots 0.1(0.03) 0.09(0.03) 0.09(0.07) 0.08(0.04) 0.29(0) 0.12(0.01) 0.23(0) 0.22(0)
dice -0.05(0.1) -0.06(0.04) -0.06(0.07) -0.06(0.03) 0.03(0.39) 0.01(0.86) 0(0.9) 0.01(0.57)

number -0.04(0.42) -0.04(0.4) -0.04(0.39) -0.04(0.4) 0.02(0.66) 0(0.92) 0(0.92) -0.01(0.82)
temperature -0.03(0.55) -0.02(0.52) -0.03(0.43) -0.03(0.43) -0.12(0) -0.09(0.01) -0.11(0) -0.08(0)
first round

ball 0.02(0.6) 0.01(0.77) 0.01(0.64) 0.01(0.78) 0.02(0.44) 0.03(0.33) 0.02(0.41) 0.04(0.17)
dots 0.02(0.53) 0.03(0.35) 0.03(0.46) 0.02(0.45) 0.32(0) 0.11(0) 0.25(0) 0.24(0)
dice 0(0.93) -0.02(0.39) -0.04(0.14) -0.01(0.4) 0.01(0.66) 0(0.93) 0(0.89) 0(0.8)

number 0(0.98) 0(0.88) -0.01(0.84) -0.01(0.87) -0.01(0.79) 0(1) -0.01(0.73) -0.01(0.66)
temperature -0.02(0.42) -0.03(0.26) -0.04(0.21) -0.03(0.22) -0.16(0) -0.15(0) -0.16(0) -0.11(0)

The dependent variable is Z := PIT (P, y)− 0.5. Tests are two-sided one sample t-tests.
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Figure 11: Second order calibration - PIT variance
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The target variable is Z := 12(PIT (P, y) − m̂(d))2 − 1, where m̂(d) constitutes the estimated mean for each domain and
information update.
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Table 4: Second order calibration - PIT variance

IP MPP

atoms beta norm pl atoms beta norm pl
info = strong

ball 0.5(0) 0.4(0.01) 0.4(0.01) 0.3(0.04) 0.1(0.54) 0.3(0.04) 0.1(0.42) -0.2(0.04)
dots 1(0) 0.5(0) 1.2(0) 0.3(0.01) 0.4(0.04) 0.3(0.07) 0.1(0.67) -0.2(0.05)
dice 0.1(0.53) -0.3(0.02) 0.4(0.03) -0.3(0) -0.1(0.62) -0.3(0) -0.3(0) -0.5(0)

number 1.3(0) 0(0.92) 1.1(0) 0(0.75) 0(0.75) -0.2(0.19) -0.3(0.01) -0.5(0)
temperature 0.6(0) -0.1(0.34) 0.9(0) -0.2(0.04) 1(0) 0.7(0) 0.7(0) -0.2(0)
info = weak

ball 0.5(0) 0.4(0) 0.5(0) 0.3(0.02) 0.3(0.03) 0.4(0.01) 0.3(0.01) 0.1(0.37)
dots 0.8(0) 0.6(0) 0.9(0) 0.5(0) 0.3(0.24) 0.5(0) 0.1(0.75) -0.2(0.09)
dice -0.3(0.01) -0.3(0) 0.1(0.41) -0.4(0) 0.1(0.38) -0.3(0.01) -0.2(0.02) -0.5(0)

number 0.5(0) 0.4(0.01) 0.4(0) 0.4(0.02) 0.2(0.32) 0.2(0.24) 0.2(0.26) -0.1(0.4)
temperature 0.8(0) 0.1(0.29) 0.5(0) 0(0.87) 0.3(0.04) 0(0.74) 0(0.72) -0.4(0)
first round

ball 0.4(0) 0.3(0) 0.4(0) 0.2(0.01) 0.5(0) 0.5(0) 0.4(0) 0.1(0.18)
dots 0.9(0) 0.7(0) 1.1(0) 0.6(0) 0.1(0.61) 0.4(0) 0(0.95) -0.3(0)
dice -0.3(0) -0.4(0) 0.2(0.1) -0.5(0) -0.1(0.5) -0.3(0) -0.3(0) -0.5(0)

number 0.4(0) 0.3(0.01) 0.3(0) 0.2(0.03) 0.4(0) 0.3(0) 0.3(0) 0.1(0.5)
temperature 0.5(0) 0.1(0.27) 0.5(0) 0(0.52) 0.4(0) 0(0.84) 0.1(0.49) -0.4(0)

The target variable is Z := 12(PIT (P, y) − m̂(d))2 − 1, where m̂(d) constitutes the estimated mean for each domain and
information update. Tests are two-sided one sample t-tests.
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Figure 12: Difference in accuracy - CRPS
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The target variable is denoted as Z := CRPS(P, y). The MPP and IP value indicate average CRPS normalized by the
highest possible CRPS within each domain. The MPP − IP value indicates the average score difference normalized by the
IP score, where negative values indicate superior accuracy of MPP.
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Table 5: Difference in accuracy - CRPS

IP MPP - IP

atoms beta norm pl atoms beta norm pl
info = strong

ball 11.3 10.8 11 10.8 -0.8(0.46) -0.8(0.5) -1.4(0.24) -1.3(0.22)
dots 14 12.8 15.2 12.7 6.7(0.01) 5.4(0.02) 2.8(0.25) 4.4(0.04)
dice 4 3.4 3.8 3.5 -0.7(0.08) -0.2(0.52) -0.7(0.1) 0.1(0.81)

number 10 8.7 10.4 8.4 -6.8(0) -5.4(0) -7.4(0) -3.9(0.01)
temperature 3.1 2.6 2.9 2.5 -0.1(0.72) 0.3(0.4) -0.1(0.7) 0.4(0.18)
info = weak

ball 11.4 11.1 11.5 10.9 1.4(0.28) 0.5(0.7) 0.4(0.75) 0.5(0.65)
dots 16.8 15.5 16.9 15.4 13.7(0) 6.2(0.01) 7.8(0.01) 8.6(0)
dice 4.6 4 4.2 4.1 -0.3(0.45) 0.1(0.83) -0.3(0.5) 0.2(0.61)

number 19.7 18.9 19.7 18.8 -3(0.11) -3.4(0.08) -3.8(0.06) -3.3(0.06)
temperature 3.9 3.4 3.6 3.3 -0.9(0.04) -0.6(0.15) -0.9(0.07) -0.4(0.31)
first round

ball 11 10.7 10.9 10.6 1.5(0.08) 1.4(0.1) 0.9(0.31) 0.6(0.42)
dots 17.7 16.6 18.2 16.4 15.5(0) 4.7(0.01) 8(0) 9.3(0)
dice 4.6 4.1 4.3 4.2 0.4(0.17) 0.4(0.11) 0.1(0.76) 0.6(0.03)

number 18.5 17.8 18.2 17.8 0(0.98) -0.7(0.56) -1.2(0.38) -0.9(0.43)
temperature 4 3.5 3.9 3.5 0(0.9) 0.2(0.45) -0.2(0.66) 0.2(0.48)

The target variable is denoted as Z := CRPS(P, y). The IP value indicate average CRPS within each
domain for the IP treatment. The MPP − IP value indicates the average score difference normalized by
the IP score, where negative values indicate superior accuracy of MPP. Tests are two-sided two sample
t-tests.
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Figure 13: Consistency of willingness to pay and subjective probabilities
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The target variable is 1 if the mean of the predictive distribution is above the offer and the offer was accepted or if the mean
is below and the offer was rejected. Otherwise, the dependent variable is 0 indicating inconsistent behavior. The MPP and
IP value indicate the average ratio of consistent behavior within each treatment and domain. The MPP − IP coefficient
indicates the average difference normalized by the IP value, where positive values indicate superior consistency of MPP.
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Table 6: Consistency of willingness to pay and subjective probabilities

IP MPP - IP

atoms beta norm pl atoms beta norm pl
info = strong

ball 0.56 0.56 0.55 0.56 -0.08(0.38) 0.03(0.71) 0.03(0.69) 0.01(0.95)
dots 0.64 0.66 0.67 0.64 0.1(0.2) 0.05(0.56) 0.06(0.46) 0.1(0.2)
dice 0.66 0.69 0.66 0.66 0.18(0.02) 0.14(0.06) 0.15(0.04) 0.18(0.02)

number 0.75 0.73 0.75 0.75 0.1(0.2) 0.1(0.21) 0.08(0.3) 0.01(0.87)
temperature 0.7 0.67 0.69 0.7 0.12(0.1) 0.15(0.04) 0.14(0.06) 0.07(0.38)
info = weak

ball 0.61 0.59 0.58 0.61 0.02(0.8) 0.06(0.44) 0.06(0.45) 0.01(0.94)
dots 0.77 0.76 0.76 0.77 -0.03(0.7) -0.09(0.26) 0.01(0.84) 0(0.99)
dice 0.68 0.69 0.68 0.69 -0.08(0.35) -0.15(0.07) -0.1(0.2) -0.1(0.2)

number 0.61 0.63 0.61 0.61 -0.05(0.61) -0.05(0.62) 0.01(0.93) -0.03(0.76)
temperature 0.69 0.7 0.69 0.69 0.05(0.48) 0.05(0.47) 0.07(0.37) 0.04(0.61)

The target variable is 1 if the mean of the predictive distribution is above the offer and the offer was accepted
or if the mean is below and the offer was rejected. Otherwise, the dependent variable is 0 indicating inconsistent
behavior. The IP coefficient depicts baseline averages for the IP treatment and the MPP - IP coefficient shows
average difference in the ratio of consistent behavior, where positive values indicate superior consistency of
MPP. Tests are two-sided two sample t-tests.
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C Additional experiment: Unincentivized reports
In this section we provide the results of an additional experiment which was conducted with a
sample of 89 participants after the main experiment.

In this additional experiment, we applied the same two treatments as before (MPP and IP,
weak and strong information updates). The participants were asked for the number of heads out
of 100 coin flips. The weak and strong information update was the number of heads in the first 50
and 90 flips respectively.

The crucial difference to the main experiment is that the participants were explicitly told that
these reports would not influence their payments. (Compare the explanation in Section S1.5 of
the supplementary document.) As such we can investigate if hypothetical incentives can be used
to elicit beliefs if incentives are infeasible. While this is common practice in applied studies with
probability questions, little is known about the reliability of unincentivized reports that use the
incentive structure merely as an explanation and communication device.

Further, we elicited more CDF points in this experiment. For MPP we elicited seven quantiles
for the levels

α = ( 1
101 ,

1
11 ,

1
4 ,

1
2 ,

3
4 ,

10
11 ,

100
101).

For IP, we first asked for the minimum and maximum, subsequently divided this interval into seven
equidistant subintervals, and finally elicited the nine probabilities on the generated intervals.

C.1 Reports for minimum and maximum

We find that about 80% of participants report positive probabilities for the intervals beyond the
minimum and maximum report. Similar patterns were observed in Delavande et al. (2011) and
Dominitz and Manski (1997). Thus, the reported probabilities and minimum and maximum are
not consistent.

In Figure 14, we see that while most participants report positive probabilities, those are rela-
tively small. In over 80% of the cases the reported mass does not exceed 0.1. One interpretation of
the results would be that participants neglect the tails and issue extreme quantiles instead of the
actual minimum/maximum.

In the MPP treatment, we can use the extreme quantiles to approximate minimum/maximum
reports (compare Proposition 3 ??). And indeed, we see in Figure 15 that the lowest elicited
quantile and the minimum report behave in a similar manner. Before the information update only
a small ratio of participants reports the true minimum at 0. Clearly, the information updates are
largely incorporated logically, as both updates correctly increase the reported minimums and the
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Figure 14: Reported probabilities beyond minimum and maximum
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Histogram of reported probabilities (in %) for the interval beyond the minimum (left plot) and the
maximum (right plot) in the IP treatment.

strong information does so more heavily.

C.2 Calibration and accuracy

We apply the same analysis as in the main part of the paper. Two observations for each elicitation
method were deleted as the mean of their predictive distribution was below 30 or above 70 indicating
that the participants either misunderstood or put no thought in the task. Figure 16 shows that
most domains exhibit no evidence against first order calibration with the exception of the first
round of MPP elicitation, where there is some weak evidence against it.

Figure 17 suggests that participants overestimate uncertainty for the 100 coin flips, but are
mostly able to judge the distribution for the 10 remaining coin flips. This underconfidence is
stronger for MPP. A possible explanation is that participants overestimate the uncertainty of a
binomial distribution with many observations (Benjamin et al., 2017). This effect may be partially
cancelled out by the tendency to report overconfidently with IP.

The average CRPS scores in Figure 18 show no evidence against equal accuracy, however MPP
performed up to 30% better before the information update and after the strong information update.

In summary, the experiment provides no evidence that the absence of incentives, the elicitation
of additional CDF points, and flexible support for the IP treatment fundamentally change the
conclusions of the main experiment.
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Figure 15: Minimum reports
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Figure 16: First-order calibration - PIT average
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The target variable is Z := PIT (P, y)− 0.5.
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Figure 17: Second order calibration - PIT variance
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The target variable is Z := 12(PIT (P, y)− m̂(d))2− 1, where m̂(d) constitutes the estimated mean
for each domain and information update.

Figure 18: Difference in accuracy - CRPS
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The target variable is denoted as Z := CRPS(P, y). The MPP and IP value indicate average
CRPS normalized by the highest possible CRPS within each domain. The MPP − IP value
indicates the average score difference normalized by the IP score, where negative values indicate
superior accuracy of MPP.
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