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Abstract

We consider beliefs about real-valued outcomes, and show how to elicit the en-
tire subjective probability distribution with binarized scoring rules. Further, we pro-
pose a simple, incentive compatible elicitation mechanism - multiple point predictions
- that partially identifies the subjective probability distribution. Simultaneously elicit-
ing multiple point predictions with linear incentives reveals the subjective probability
distribution without pre-defined anchors or probabilistic statements. In a laboratory
experiment, we test belief elicitation with multiple point predictions and compare it to
the standard approach of eliciting discrete probabilities on pre-defined intervals. We
find that elicitation with point predictions is faster, more convenient and more pre-
dictive of subsequent behavior. In the absence of anchors, the elicited distributions
show evidence of first order biases, but are less prone to overconfidence. Further, the
distributions are less accurate for uninformed participants, and more accurate under
heterogeneous information.

∗Address for correspondance: Patrick Schmidt, HITS gGmbH, Schloss-Wolfsbrunnenweg 35, 69118 Hei-
delberg, Germany. E-mail: Patrick.Schmidt@h-its.org. Phone: 0049 69 798-34837.



1 Introduction

Economic modeling and decision making under uncertainty often rely on subjective beliefs
and the elicitation thereof. We consider beliefs about real-valued variables (e.g., income,
profit, inflation, growth rates, exchange rates, survival rates, infection rates, second-order
probabilities), which take the form of continuous probability distributions.1 As the human
mind is commonly not used to processing probability distributions, the elicitation can be
challenging in practice. In this paper, we propose to elicit subjective probability distributions
indirectly with linear incentive schemes and framed as point predictions.

In the first part of this paper, we provide a unified framework for the incentivized elic-
itation of subjective probability distributions with binarized scoring rules2 (Harrison et al.,
2014; Hossain and Okui, 2013; Schlag and van der Weele, 2013; Smith, 1961). A common
procedure is to divide the real line into intervals and elicit the discrete distribution on those
intervals. This elicitation can be incentivized with the widely applied quadratic scoring rule
(QSR) (Costa-Gomes et al., 2014; Huck and Weizsäcker, 2002; McKelvey and Page, 1990;
Nyarko and Schotter, 2002; Offerman et al., 2009; Palfrey and Wang, 2009; Rutström and
Wilcox, 2009). The obtained interval probabilities (IP) identify the cumulative distribution
function (CDF) at the pre-defined interval thresholds. We generalize this procedure and
show that the entire density can be elicited without pre-defined intervals.

It is often argued that it is preferable to incentivize belief elicitation (e.g., Blanco et al.,
2010; Gächter and Renner, 2010; Harrison, 2014; Schlag et al., 2015). The literature provides
several elicitation mechanisms that reveal (aspects of) subjective probability distributions
about real-valued variables (Demuynck, 2013; Harrison et al., 2015; Hossain and Okui, 2013;
Qu, 2012; Schlag and van der Weele, 2013). While elicitation mechanisms can be theoretically
equivalent, they have different psychological implications and experimental evidence for the
applicability of different methods is context dependent (Schlag et al., 2015; Schotter and
Trevino, 2014; Trautmann and van de Kuilen, 2015).

For events, no simple linear scoring rule truthfully elicits the event probability. For
subjective probability distributions on the real line, however, linear incentives identify pre-
defined CDF levels. We propose to elicit multiple point predictions (MPP) with asymmetric
linear incentives to identify quantiles of the subjective probability distribution. We show that

1Manski (2018) and Delavande et al. (2011) review examples in macro and development economics.
2Also referred to as binary lottery procedure.
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MPP can be used to elicit points of the subjective CDF under probabilistically sophisticated
preferences (Machina and Schmeidler, 1992). While IP allow to choose at which outcome
levels the CDF is revealed, MPP allow to choose at which probability levels the CDF is
revealed. Without anchors or explicit probabilistic statements3, MPP provide essentially
the same amount of information about the subjective probability distribution as IP.

The intuition behind point predictions is rather natural. On a regular basis we encounter
uncertainty such as “How many days will I need to finish the project?”. We commonly express
our beliefs in point estimates (e.g., “I need 10 days.”) instead of probabilities (“There is
a 50% chance that I need less than 10 days”). Moreover, the consequences of over- or
underestimation might be rather different. If finishing one day too late is more costly than
one day too early, we would express a higher estimate (“12 days.”). If instead finishing a day
early is more costly than a day late, we would express a lower estimate (“8 days.”). Applying
MPP, we rely on the same intuition. Each point estimate influences the payout in a simple
linear relationship. By varying the asymmetry between under- and overestimation, we can
elicit different quantiles of the underlying subjective probability distribution. We argue that
point predictions allow to construct a relatively intuitive elicitation mechanism.

Our method overcomes several potential caveats of currently used methods: Many meth-
ods require individuals to communicate their beliefs in probabilistic form. Outside of the lab,
individuals rarely communicate their beliefs in that way. Simple point predictions, however,
were criticized for being uninformative about the uncertainty (Engelberg et al., 2009). MPP
allow convenient communication and reveal uncertainty.

Moreover, IP can be influenced by bin effects (Benjamin et al., 2017) and insufficient
adjustments from anchors (Jacowitz and Kahneman, 1995; Tversky and Kahneman, 1975;
Wright and Anderson, 1989). The choice of intervals may influence the reported subjective
probability distribution. Therefore these intervals have to be chosen carefully. If beliefs vary
strongly across participants, uniformly adequate intervals may be hard to find. Individual
specific adaptation of intervals, on the other hand, can influence responses and complicate
comparisons across individuals.

Finally, incentivized reports are often based on complex payoff functions (e.g., proper
scoring rules) (Brier, 1950; Winkler, 1967). Some procedures show payoffs contingent on
outcomes, which allows respondents to explore the incentive structure (Harrison et al., 2014;
Holt and Smith, 2016). Other procedures explicitly tell participants that it is optimal to

3We call reports “probabilistic” if they are in the form of a probability distribution.

2



report their “true beliefs”. This recommendation of optimality is debatable, as it depends
on decision theoretic assumptions (compare Offerman et al., 2009).

In the second part of the paper, we present an experimental application of belief elicitation
by MPP and compare it to the elicitation of IP. For the sake of comparability, we incentivize
the IP reports with the QSR and apply binarized scores for both methods. In a laboratory
experiment, we elicit subjective probabilities over five different real-valued outcomes. The
domains differ in the level of complexity and cover symmetric and skewed distributions,
ambiguity and skill-based assessments. Despite the fact that the two mechanisms predict
identical responses under probabilistically sophisticated preferences, we find strong evidence
for differing response behaviors. Using various evaluation criteria, we conduct a thorough
analysis of the advantages and disadvantages of both elicitation methods.

In forecasting, the elicited subjective distributions should be informative about the un-
known outcome. We define calibration and accuracy in a joint probability space that contains
elicited distributions and the uncertain outcome. Specifically, we test first and second order
calibration using the Probability Integral Transform (PIT) (Dawid, 1984; Diebold et al.,
1998), and compare the information content and accuracy of the elicited distributions with
the Continuous Ranked Probability Score (CRPS) (Gneiting and Raftery, 2007; Matheson
and Winkler, 1976). Both measures are easily interpretable and consider the whole distri-
bution.

The elicited distributions reveal systematic biases that depend on the application as well
as the elicitation procedure. While the elicitation of IP leads to overconfident (too narrow)
probability distributions, elicitation of MPP shows no evidence for such miscalibration. Dis-
tributions obtained from MPP are biased for some applications. This bias is less severe for
IP. We further find that the distributions elicited by MPP are slightly more consistent with
subsequently recorded behavior. Finally, we find that uninformed participants report more
accurate beliefs with IP, and that informed participants with heterogeneous beliefs report
more accurate beliefs with MPP. These results are consistent with the interval thresholds
functioning as anchors for uninformed participants. With regard to applicability, participants
that reported beliefs with MPP required less time and were more likely to react positively
to subjective perception questions after the experiment.

In the following section, we provide theoretical background on property elicitation and
discuss how to recover probability distributions after eliciting CDF points. Section 3 de-
scribes the experimental design. Results are provided in Section 4, followed by a discussion
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in Section 5. The appendix contains a more technical treatment, proofs, and additional
results. An online supplementary document is available with additional details and a de-
scription of the experiment.

2 Theory of Property Elicitation

Consider the task of eliciting an agent’s belief about a real-valued random variable y. A
state of belief is represented by a subjective probability P, which is defined as a CDF –or
equivalently a density– on the outcome space R of y.

We elicit specific properties T (P) of the subjective probability (e.g., a quantile or the
likelihood of an interval) with the following procedure also known as binarized scoring rules
(compare e.g., Harrison et al., 2014; Hossain and Okui, 2013; Schlag and van der Weele,
2013). The agent chooses a report x from the report space X . After observing the random
variable y, the agent is remunerated based on the scoring rule s, which is a function of the
outcome y and the issued report x. Specifically, the agent receives a prize if the score s(x, y)
exceeds a uniformly distributed random variable with suitably chosen support.

We assume that the agent has no other stakes concerning the random variable y and acts
probabilistically sophisticated. See Regularity Conditions 1 in the Appendix for details.4

The remainder of this section tackles the question which properties of the distribution can
be elicited by the mechanism above and how the reports (partially) identify the subjective
probability distribution P. We call an elicitation method incentive compatible for a property
T if the optimal report of an agent with subjective probability P is T (P).

2.1 Eliciting Interval Probabilities

Let us consider the most prominent example for the elicitation of a property: interval prob-
abilities. The common approach is to choose some thresholds c1, . . . , cn−1 that define the
respective property Tc(P) = (P(y ≤ c1),P(c1 < y ≤ c2), . . . ,P(y > cn−1)) and to apply the
QSR for discrete probabilities. The eligible reports are probability vectors for n possible
outcome values, X := {x ∈ [0, 1]n| ∑

i xi = 1}. After issuing the report x = (xi, . . . , xn) and
observing the outcome y in the kth interval, the agent wins the prize if the QSR for multiple

4We note that there is mixed empirical evidence on binarized incentives inducing risk neutral behavior
with Cox and Oaxaca (1995) and Selten et al. (1999) providing evidence against and Harrison et al. (2013,
2015) and Hossain and Okui (2013) providing evidence for the validity of the procedure.
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events,
s(x, y) = 2xk −

∑

i

x2
i + 1, (1)

exceeds a uniformly drawn random variable with support [0, 2]. This elicitation mechanism
is incentive compatible for the discrete probability distribution Tc (Winkler, 1967). Note,
however, that this procedure does not reveal the entire distribution P. We refer to this
method as elicitation of interval probabilities.

2.2 Eliciting the Entire Probability Distribution

We show how to elicit the entire probability distribution using a continuous generalization
of the QSR. The report space X contains probability density functions. We assume that the
eligible distributions have bounded densities with some bound B. Given a reported density
function p(·), we compute the score as

s(p, y) = 2p(y) −
∫

R
p(w)2dw + B.

Subsequently, we draw a uniformly distributed random variable on [0, 3B]. The agent receives
a fixed payoff if the score exceeds the random draw.

Theorem 1 (density). The mechanism described above is incentive compatible for the prob-
ability density function.

See Lemma 2 in the Appendix for details. Any property could be elicited indirectly
by eliciting the density and subsequently calculating the respective property. However, the
communication of a whole distribution can be burdensome, or impossible, without parametric
assumptions and the involved scoring rule is complex.

2.3 Elicitation of Multiple Point Predictions

Instead of probabilistic reports, we propose to elicit multiple point predictions. Each pre-
diction is incentivized by a different linear scoring rule, which allows to infer quantiles of
the underlying distribution. While the quantile is a rather complex concept, there exist
simple linear proper scoring rules. In contrast, interval probabilities are simple concepts,
that can only be incentivized by complex scoring rules (like the QSR). A key element of our
approach is to focus the participant’s attention on the payoff function. The probabilities are
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subsequently inferred by the researcher. In doing so, MPP do not require the participant to
understand formal probability concepts, nor to communicate in probabilistic statements.

For each point prediction x the payoff depends on the distance between x and the true
outcome y. In particular, this difference is multiplied by a positive factor a or b, depending on
whether the individual underestimates or overestimates, and then deducted from an initial
endowment e.

s(x, y)a,b =





e − a · |x − y| if x ≤ y (underestimation),

e − b · |x − y| if x > y (overestimation).
(2)

Under this scoring rule the expected score maximizing strategy is to report the quantile of
P with level α = a

a+b
(Schlaifer and Raiffa, 1961). If the payoff consists of lottery tickets,

the incentive structure is robust beyond risk neutrality (Hossain and Okui, 2013; Schlag and
van der Weele, 2013). Similar incentives (without binarized scores) framed as prediction tasks
have been used in the experimental literature before. Dufwenberg and Gneezy (2000) and
Kirchkamp and Reiß (2011) use the symmetric version with a = b of the linear scoring rule
in Equation (2) which is incentive compatible for the median.5 Charness and Dufwenberg
(2006) and Sapienza et al. (2013) use the score s(x, y) = V(|x − y| < d) which is incentive
compatible for the midpoint of the modal interval of length d. This scoring rule obtains only
two possible values and is therefore robust to risk attitude without binarizing (see Lemma 1
in the Online Supplement for details).

The following theorem shows how to elicit multiple quantiles simultaneously under the
assumption that the support of P has finite length l. Let α = (α1, . . . , αn) be a vec-
tor of n different quantile levels on the unit interval (0, 1). We choose appropriate posi-
tive numbers ai, bi such that αi = ai

ai+bi
and fix the initial endowment at e = lM , where

M = max(a1, b1, . . . , an, bn). For each level the participant issues a point estimate xi. Sub-
sequently, the score is computed as

sα(x, y) =
n∑

i=1
sai,bi

(xi, y). (3)

The agent receives a fixed payoff if the score exceeds a uniformly distributed random draw
on [0, nlM ].

5Haruvy et al. (2007) apply a piecewise constant version of the linear symmetric incentives, which incen-
tivizes a report that deviates slightly from the median.
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Figure 1: Elicited CDF points and the space of consistent CDFs. In this example five
CDF points were elicited with IP on the interval thresholds c = (−12, −6, 0, 6, 12) , and the elicited
probabilities are (0, 0.1, 0.4, 0.3, 0.2, 0). The space of consistent CDFs is denoted by any weakly
increasing function that crosses the five given black dots. The possible CDF values are depicted as
gray rectangulars.

Theorem 2 (multiple quantiles). If the agent has a subjective probability with strictly pos-
itive density on finite support of length l, then the mechanism described above is incentive
compatible for the quantiles with levels α1, . . . , αn.

See Lemma 3 in the Appendix for details. Note that the lottery payoff is only well defined
for positive scores. Thus, l has to be chosen large enough to result in positive scores for every
value of y with positive subjective probability.6 In applications, a smaller value of l might
be desirable to increase the incentives to exert effort.

2.4 Partial Identification and Bounds

The quantile reports x = (x1, . . . , xn) from MPP for levels α = (α1, . . . , αn) allow to infer
about the subjective probability P, that αi = P(y ≤ xi) for i = 1, . . . , n. This coincides
with the information obtained when eliciting IP with thresholds c = x on the n + 1 intervals
(−∞, x1], . . . , (xn, ∞). By design, MPP allow to fix the probability levels αi and IP allow
to fix the thresholds ci. Both essentially reveal the same amount of information about the
subjective probability distribution.

6In the case of infinite support, an increasing l can induce reports which approximate the quantiles
arbitrarily well.
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Figure 2: Elicited CDF points and the space of consistent CDFs for three examples.
Each column contains the true belief as pdf in the first row, and the elicited CDF points and the
space of consistent CDFs in the second and third row for IP with c = (−12, 6, 0, 6, 12) and MPP
with α = (0.05, 0.25, 0.5, 0.75, 0.95) respectively. The black line depicts the true pdf in the first row
and the true CDF in the second and third row.

The subjective probability distribution P is only partially identified. However, we ob-
tain the set of distributions that is consistent with the elicited CDF points and bounds on
properties of interest (compare Bissonnette and de Bresser, 2018; Engelberg et al., 2009).

In Figure 1, we see an example of CDF points that can be identified by IP with interval
thresholds c = (−12, −6, 0, 6, 12). The example is loosely based on the Survey of Consumer
Expectations (Armantier et al., 2017) by the Federal Reserve Bank of New York that elicits
the expected percentage change of earnings in one year.7 The grey area bounds the set of
consistent CDFs.

It is a core feature of the quantile reports that they are automatically distributed over
the mass of the distribution as wished by the elicitor. In elicitation of IP, the support of
the subjective distribution might be located outside of the elicited intervals, or the whole
support might be located in one single interval. As an example, we consider three individuals
with different beliefs in Figure 2. The individual in the first column perceives significant
uncertainty about her earnings but expects on average no changes. The IP thresholds are
well suited to identify this belief. The second individual is more optimistic and more certain
about future earnings. With IP the elicitor obtains no information about the CDF shape in
the interval [0, 6]. Asking for MPP the elicitor obtains no information about the tails of the

7The actual thresholds are c = (−12, −8, −4, −2, 0, 2, 4, 8, 12). For another example of unincentivized
elicitation on pre-defined intervals see the inflation and output growth forecasts in the Survey of Professional
Forecasters (Croushore, 1993).

8



CDF. The third individual expects more than 12% income rise. IP provide no information
about the expectations beyond 12%. MPP do not allow to bound the CDF from below. In
summary, the examples show that MPP can adapt more flexibly to heterogeneous beliefs, but
cannot bound the tails of the CDF beyond the elicited levels without additional assumptions.

Let us consider bounding properties, e.g. the mean, median or interquartile range. Any
property that is monotone with respect to stochastic dominance (e.g., the mean or the
median), can be bounded easily by the respective property for the CDF that dominates
and is dominated by all other consistent CDFs (illustrated in Figure 1). In the following
we analyze which method provides sharper bounds. We assume that the support of the
distribution is bounded.8 For the mean property, it follows from linearity arguments that
the bounds after eliciting IP and MPP are equally sharp. The median property is uniquely
identified by MPP, whereas IP can only identify the interval in which the median lies. The
mode property cannot be bounded without further assumptions by either method.9

Generally, it is harder to find valid bounds on measures of dispersion.10 Conveniently,
elicitation of MPP identifies the interquantile range between the elicited quantiles. In the
elicitation of IP, quantiles are only pinned down in their respective intervals, thus the size
of the bounds on any interquantile range is either the length of the elicited intervals (if both
quantiles are located in the same interval) or twice that amount (if the quantiles are located
in different intervals).

MPP can also be used to elicit information on the maximum and minimum, which oth-
erwise cannot be elicited directly (Bellini and Bignozzi, 2015). We propose to elicit a set of
extreme quantile levels (e.g., α = (0.1, 0.01, 0.001)). The best response of the agent when
eliciting the α-quantile, converges to the minimum of the subjective probability if the level
α goes to zero. Note that for subjective probabilities with infinite support the minimum
may be −∞ in which case the best responses also diverges. See Lemma 2 in the Online
Supplement for details. Analogously the maximum can be approximated with levels close to
one (e.g., α = (0.9, 0.99, 0.999)).

8For unbounded support, the boarder parts of the CDF would be unbounded and so would be most
properties (e.g., the mean).

9Note that Engelberg et al. (2009) require the additional assumption that the mode lies in the interval
with the highest probability to provide partial identification.

10Dillon (2016) provides results for bounding the mean and variance simultaneously allowing for imprecisely
reported interval probabilities.
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Figure 3: Elicited CDF points and parametric distributions. The fitted distributions are
illustrated as CDFs (left plot) and densities (right plot).

2.5 Parametric Assumptions

When the bounds on the subjective probability distribution are too broad, one can rely on
additional assumptions to fit unique parametric distributions to the elicited CDF points. We
call the resulting distribution a predictive distribution. We consider four commonly applied
procedures that are illustrated in Figure 3. The atoms distribution assumes a discrete
distribution, where the mass is located at the midpoint of each elicited interval11 (compare
Hill, 2010; Lahiri and Teigland, 1987; Lahiri et al., 1988). The pl distribution assumes
a piecewise linear CDF (compare Diebold et al., 1999; Guiso et al., 2002; Zarnowitz and
Lambros, 1987), which is equivalent to a piecewise constant density.

Further, we fit predictive distributions by minimizing

inf
θ

∑

i

(F (xi; θ) − αi)2,

where xi and αi are obtained by the reports and F (·, θ) is the CDF of the distribution
for the parameter θ. In particular, we fit a normal distribution (compare Boero et al.,
2015; Clements, 2014; Dominitz and Manski, 2011; Giordani and Söderlind, 2003; Gouret
and Hollard, 2011; Hurd et al., 2011) and a beta distribution (compare Delavande, 2008;

11The outer intervals are assumed to have the same length as the neighboring interval.
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Engelberg et al., 2009; Manski and Neri, 2013; Neri, 2015).12

Figure 3 illustrates several stylized facts about the parametric assumptions: Measures of
central tendency, like the mean and median, are relatively robust to the choice of distribu-
tional assumptions. Measures of dispersion, like interquantile ranges or the variance, depend
heavily on the chosen fit, where the atoms distribution always has a lower variance then
the pl distribution. This simple observation challenges the common approach to construct
variance estimates of the subjective distribution with only a small number of elicited CDF
points. In particular, the assumption invoked for the atoms distribution, putting all mass at
the midpoints of the intervals, potentially underestimates the uncertainty.

3 Experimental Design

In a laboratory experiment we compare belief elicitation with MPP to the standard procedure
of eliciting beliefs via IP. The experiment was based on OTree (Chen et al., 2016) and was
conducted at the Frankfurt Laboratory for Experimental Economic Research (FLEX). In
total we recruited 282 subjects through the online system ORSEE (Greiner, 2004) divided
into 14 sessions with 8 - 24 participants in each session.

3.1 Experimental Treatments

The experiment consisted of four (2 × 2) different treatments as illustrated in Figure 4a.
Each subject was randomly assigned to one of the four treatments. In two of the treatments
we elicited IP using the binarized QSR as described in Section 2.1. In the remaining two
treatments we elicited MPP using binarized linear incentives as described in Section 2.3.
Furthermore, the treatments differed with respect to the information updates that were
presented to the subjects during the experiment, which allows to analyze the performance
under different information environments.

12Other distributional fits in the literature that we do not consider are the log-normal distribution (used
for income expectations in Dominitz, 2001; Dominitz and Manski, 1997; McKenzie et al., 2013), triangular
densities (Kaufmann and Pistaferri, 2009) and cubic-splines (Bellemare et al., 2012).
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(a) Experimental treatments

Elicitation of Subjective Probabilities (IP or MPP)
↓

Information Update (weak or strong)
↓

Elicitation of Subjective Probabilities (IP or MPP)
↓

Willingness to Pay
↓

Results

(b) Elicitation procedure within each domain

Figure 4: Summary of experimental treatments and elicitation procedure within each of the five
domains

3.2 Domains

We elicited subjective probabilities for five different fields of application. The order in which
these domains were presented varied randomly between subjects to avoid order effects. Figure
4b illustrates the timeline within each domain. An explanation screen was shown first. Then,
the subjective probabilities were elicited. Next, subjects were given an information update,
which provided either weak or strong information. Afterwards, we elicited the subject’s belief
again. After the second round of belief elicitation, we elicited if participants were willing to
pay a given amount of credits13 in exchange for receiving the uncertain outcome y in credits.
We use this willingness to pay as consistency check for the elicited beliefs.

For a summary of the domains and the used information updates see Table 1. In the dice
domain, the uncertain outcome was the sum of ten virtual dice rolls. In the dots domain it
was the amount of dots shown on the computer screen. The true value was randomly chosen
between 150 and 250. The number domain exhibited a randomly chosen number between 0
and 99. In the more complicated ball domain, we virtually presented an urn with 60 balls,
numbered from 1 − 60. As a second step, we blindly drew 10 out of these 60 balls without
replacement and put them into another urn, without showing the result to the participants.
Next, we drew three balls with replacement from the second urn and showed them to the
participants before putting them back into the urn. Finally, the participants were asked
to estimate the number on the fourth ball that was drawn from that second urn. In the
temperature domain subjects were asked to report on the highest temperature in Frankfurt
of a particular day in 2016.

13Offers were uniformly distributed around the unconditional mean of the uncertain outcome y, i.e. on
the interval [0.9E[y], 1.1E[y]].
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Domain Weak Update Strong Update
Dice: Sum of ten dice rolls Two dices Six dices
Dots: Number of dots Comparison with small rectangle Comparison with similar sized rectangle
Number: Random number (0-99) Second digit First digit
Ball: Urn draw of numbered balls (1-60) One additional draw Six additional draws
Temperature: Past temperature in Frankfurt Temperature one week before Temperature one week & one day before

Table 1: Information Updates

Whereas the ball domain should induce asymmetric beliefs, the dice domain and number
domain should induce symmetric beliefs. These domains are inherently random. In compar-
ison, the dots domain is skill/effort-based. Finally, the temperature domain is closest to a
real life forecasting task.

3.3 Belief Elicitation in Detail

With both methods, we elicited three CDF points. In the IP treatments, we elicited the four
probabilities simultaneously:

What do you think is the percentage chance that y is smaller than c1?
What do you think is the percentage chance that y is between c1 and c2?
What do you think is the percentage chance that y is between c2 and c3?
What do you think is the percentage chance that y is larger than c3?

The thresholds (c1 to c3) were fixed within each domain and were chosen to divide the attain-
able values into four equally sized segments. The amount of credits earned was calculated
using a rescaled version of Equation (1) such that each credit represented a 0.5 percentage
chance of winning an extra 10e if that round of belief elicitation was drawn for payoff in
the end.

In the MPP treatments, we elicited three point forecasts simultaneously:

What do you say is y,. . .
. . . if underestimation is three times less costly than overstimation?
. . . if overestimation and underestimation are equally costly?
. . . if overestimation is three times less costly than understimation?

For all three questions, the credits earned were calculated using the linear scoring rule from
Equation (2). Varying costs for over- and underestimation is equivalent to choosing different
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parameters for a and b. Here, we chose the parameters for a and b such that the 0.25-
quantile, the 0.5-quantile, and the 0.75-quantile were elicited. For details on the experiment
and instructions, see the online supplement.

4 Results

We analyze several outcome measures Z. All results are based on simple averages or differ-
ences in means within each domain (and information update) separately. To provide some
robustness with respect to the chosen fits, we consider all fitting methods described in Sec-
tion 2.5. Here, we only show the best performing fit for each treatment. See Appendix B for
the full set of results.

There are two major applications of subjective probabilities in economics. First, they
can be used as forecasts or prior distributions in Bayesian analysis (Garthwaite et al., 2005;
O’Hagan et al., 2006). Second, they are used as input in decision-theoretic models to ex-
plain behavior under uncertainty (Manski, 2004). We denote the two different applications as
forecasting and economic modeling. Forecasting strives to accurately describe the unknown
outcome, whereas in economic modeling the subjective probabilities should accurately rep-
resent the belief of an agent.

A common approach for the evaluation of elicitation mechanisms is the comparison of
the resulting subjective probabilities with objective probabilities (Schlag et al., 2015, Table
1). However, many applications of interest do not allow for valid objective probabilities,
because the conditional distribution of the uncertain outcome - given the information set of
the participant - cannot be stated.14 Consequently, the predictive distributions cannot be
compared to valid objective probability distributions.

Instead, we understand the outcome y and the predictive distribution P as realizations
in a joint probability space15. This allows us to analyze calibration and accuracy without
unduly strong assumptions on the data generating process.

14While conditional distributions are available for the dice, ball, and random number domain, it is impossi-
ble to determine the information available to the participant in the temperature and dots domain. Arguably,
most uncertain entities in economics have such an ambiguous character.

15The idea goes back to DeGroot and Fienberg (1983); Murphy and Winkler (1987). See Gneiting and
Katzfuss (2014) for a recent review.
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4.1 Calibration

We begin with an analysis of the calibration of the obtained predictive distributions. Cal-
ibration refers to the statistical consistency between the predictive distribution and the
observation (Gneiting et al., 2007). A sample of predictive distributions P is called cali-
brated for y, if each P constitutes the conditional distribution of y given some (unknown)
information set.16

While the calibration of point forecasts could be assessed with a simple analysis of the
forecast error, predictive distributions require a more sophisticated approach. We propose
to analyze calibration with the first and second moment of the Probability Integral Trans-
form (PIT), where the first moment reflects bias in position of the distribution (optimism
and pessimism) and the second moment in spread of the distribution (overconfidence and
underconfidence). The PIT is defined as the probability that the predictive distribution P
assigns to the interval below the realized outcome y:

PIT (P, y) = P((−∞, y]).

If the predictive distributions are calibrated, the PIT is uniformly distributed between zero
and one (Diebold et al., 1998; Gneiting and Ranjan, 2013). If the outcome is consistently
larger than postulated by the predictive distribution, the average PIT is close to one. If
the outcome is consistently smaller, the average PIT is closer to zero. We call a sample of
predictive distributions first order calibrated if the average PIT is equal to 1

2 . First order
calibration is a necessary condition for calibration.

Figure 5 depicts the average PIT. All results are transformed such that a coefficient of zero
indicates first order calibration. A value of 0.5 indicates that the whole probability mass is
underestimating and a value of −0.5 implies that the whole probability mass is overestimating
the realized value. We can reject first order calibration in the dots and temperature domain
for the MPP treatment. The strong information update erases the bias in the temperature
domain. The IP treatment shows no evidence against first order calibration. The observed
pattern is consistent with the intervals providing helpful anchors in the first round that
alleviate biases in perception. The results after the information update suggest that the first

16No assumptions are made on the variables that construct the information set. Lichtendahl et al. (2013)
and Hora (2004) use closely related definitions of calibration that do not consider information sets. A similar
analysis with additional structure on the information environment can be found in Grushka-Cockayne et al.
(2016).
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Figure 5: First-order calibration. The target variable is Z := PIT (P, y) − 0.5. Throughout, the
error bars show 95% confidence intervals. Participants are pooled in the first round of elicitation
(first), and distinguished after receiving the information update (weak and strong).

order miscalibration in the MPP treatment can be reduced by additional information.
A similar analysis of the variance of the PIT can be used to analyze if predictive distribu-

tions over- or underpredict uncertainty. If the outcome is consistently more extreme (smaller
or larger) than postulated by the predictive distribution, the PIT is more likely to be close
to either zero or one. If the outcome is consistently less extreme, the PIT is on average closer
to 0.5. A uniformly distributed PIT has variance 1

12 . We call a sample of predictive distribu-
tions second order calibrated if the variance of the PIT is equal to 1

12 . Predictive distributions
that are overconfident (too narrow) have a larger PIT variance, predictive distributions with
an overly wide spread have smaller PIT variance.

Figure 6 shows the transformed variance of the PIT. A value of 0 denotes a well-calibrated
second moment of the PIT. A value of −1 is obtained for the minimal PIT variance of 0 and
a value of 1 would imply that the variance of the PIT is twice as large as under second order
calibration. In general, second order calibration is less robust with respect to the chosen fit
than first order calibration. (See Figure 10 and Table 4 in Appendix B for results depicting
all fits simultaneously.)

In line with other studies, elicitation of IP lead to overly confident predictive distribu-
tions17, with many domains indicating variances that are at least 25% larger than under

17A fact referred to as overconfidence, or more specifically as overprecision (compare Alpert and Raiffa,
1982; Brenner et al., 1996; Fox and Clemen, 2005; Haran et al., 2010; Lichtenstein and Fischhoff, 1977).
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Figure 6: Second order calibration. The target variable is Z := 12(PIT (P, y) − m̂(d))2 − 1,
where m̂(d) constitutes the estimated mean for each domain and information update. A positive
value indicates overconfidence.

calibration even after choosing the most suitable fit. This overconfidence seems to be ab-
sent for the elicitation of MPP. The information updates do not seem to affect this result.
Figure 6 shows consistent evidence for overconfidence in eight out of fifteen domains for the
IP treatment and in no domain for the MPP treatment. Several mechanisms could explain
this difference in overconfidence. The four applied fits might not be sufficiently flexible.
Further, probability assessments of outer intervals are prone to rounding towards zero and
thereby underrepresenting uncertainty. Finally, participants may simply report more focused
probabilistic statements (for IP) than indirectly inferred from their behavior (for MPP).

To sum up, MPP are more prone to first order miscalibration for uninformed participants.
Under additional information, the first order calibration improves. Considering second order
calibration, IP reports are prone to overconfidence. This does not apply to MPP reports.

At this point it is worth noting that the calibration analysis above considers different
elicitation and fit methods for a random participant and a specific domain. As each partici-
pant encountered each domain only once, we cannot evaluate the calibration of one specific
participant in one specific domain, nor can we make a statement for real economic deci-
sions without additional assumptions. The observed miscalibration is, for example, perfectly
consistent with participants following some rule of thumb that is calibrated across the rele-
vant decisions in daily life, while being uncalibrated at the specific tasks encountered in our
experiment.

17



4.2 Accuracy

Accuracy and calibration are different concepts, which do not necessarily agree as to which
elicitation method performs best. An elicitation method can provide perfectly calibrated
distributions that provide little useful information because they lack sharpness. We evaluate
accuracy with proper scoring rules that can assess sharpness and calibration simultaneously
(Gneiting and Raftery, 2007). Among calibrated distributions, larger information sets im-
ply lower18 expected scores (Holzmann and Eulert, 2014). Thus, average scores can rank
elicitation methods in terms of their information content.

We argue against using local proper scoring rules like the logarithmic score that are
unstable with respect to the distributional assumption as they depend only on the density
at the realized value. Instead, we propose to use the Continuous Ranked Probability Score
(CRPS) which can be stated with α-quantiles qα(P) of the predictive distribution (Laio and
Tamea, 2007) as

CRPS(P, y) =
∫ 1

0
(qα(P) − y)(V(y ≤ qα(P)) − α)dα.

This lends the CRPS a convenient interpretation: The CRPS depicts the average proper
linear score across the quantiles of the predictive distribution. As such, lower values indicate
supreme accuracy and for predictive distributions that put all mass on one point, the CRPS
reduces to the absolute error.

The average CRPS is depicted in Figure 7. Before the information update both methods
seem to provide equally accurate predictive distributions, except for the dots domain, where
the first moment miscalibration analyzed in Section 4.1 translates into worse scores for
MPP. After the information update, the evidence suggests that MPP provide at least equally
accurate predictive distributions for all but the dots domain. In most domains, the difference
in accuracy is more favorable for MPP under more heterogeneous information (after the
strong information update). Arguably, IP could potentially benefit here if thresholds adapted
to the current information.

To summarize, the first order miscalibration analyzed in Section 4.1 led to less accurate
beliefs in the dots domain. In all other domains, MPP provided at least as accurate beliefs.
Throughout, strong information was positively correlated with the relative performance be-

18Note that we use positively oriented scores for elicitation in Section 2 and will use negatively oriented
scores for comparing predictive performance in the following.
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Figure 7: Difference in accuracy. The target variable is denoted as Z := CRPS(P, y). The
plot depicts differences in average scores divided by the average score in the IP treatment, so that
negative values indicate superior accuracy of MPP.

tween the MPP and IP reports.
Thus, in terms of both, calibration and accuracy, MPP performed well under heteroge-

neous information sets. This is consistent with the argument that pre-defined intervals act
as anchors, which improves accuracy for uninformed participants. Under increasing informa-
tion those anchors are less helpful (or even distorting). Consequently, eliciting MPP should
be considered whenever it is challenging to construct intervals that are uniformly adequate
across all participants.

4.3 Consistency with Willingness to Pay

For economic modelling an elicitation mechanism should provide accurate evidence on the
belief of an agent. The elicited probabilities cannot be compared to the unobservable beliefs.
However, a natural benchmark arises if we use the subjective probabilities to predict behavior
based on a decision-theoretic model. A well-behaved elicitation mechanism provides accurate
predictions of economic action. In our experiment we elicited if the participant is willing to
pay a certain amount of credits for the unknown outcome. As described in Section 3.2, we
offered the participants an amount of credits in exchange for receiving the uncertain outcome
y in credits after the second round of belief elicitation.19

19Several studies find that belief elicitation can influence subsequent action (Croson, 1999, 2000; Erev
et al., 1993; Gächter and Renner, 2010; Rutström and Wilcox, 2009), whereas others could not detect this
effect (Costa-Gomes and Weizsäcker, 2008; Nyarko and Schotter, 2002; Wilcox, 2006). Our setting does not
allow to test if elicited beliefs are consistent with behavior that would have occurred in the absence of the
elicitation procedure. We find, however, no significant deviations in the willingness to pay between the two
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Figure 8: Difference in consistency with willingness to pay. The plot depicts the average
difference in the ratio of consistent behavior, where positive values indicate superior consistency of
MPP. The subjective distribution and the willingness to pay decision are consistent, if the mean
of the predictive distribution is above the offer and the offer was accepted or if the mean is below
and the offer was rejected. Otherwise, the responses are inconsistent.

Figure 8 depicts the difference in average consistency. On average both elicitation meth-
ods provide a high consistency rate of about 50% to 85% across both elicitation methods
(compare Figure 12 in Appendix B). No difference can be detected after the weak informa-
tion update. After the strong information update, the beliefs elicited with MPP were 3% to
15% more likely to be consistent with subsequent behavior.

4.4 Applicability

Finally, we compare the applicability of the elicitation methods. The participants spent on
average 28 minutes on the whole survey, where MPP participants were 9% faster (p-value
< 0.01). For the first probability elicitation, IP subjects took on average 96 seconds and
MPP subjects were 25% faster (p-value < 0.01). For the last probability elicitation IP took
on average 47 seconds and MPP was 11% faster (p-value = 0.12). Thus, MPP was faster for
unexperienced participants and the advantage reduced when applying the same mechanism
multiple times.

Table 2 shows the treatment’s impact on subjective perception questions elicited after the
experiment. On average MPP participants reported that the experiment was less difficult,
and stated to have felt less insecure and stressed and more content during the experiment.
Overall, the experience seems to be more convenient with MPP elicitation, an important
property for preventing drop-outs and ensuring high take-up rates in panel data sets.

different elicitation mechanisms.
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Table 2: Perception of experiment

MPP QSR Difference p-value
How mentally exhausting did you find the experiment? 0.09 0.31 -0.22 0.13
How difficult did you find your tasks in the experiment? 0.02 0.28 -0.26 0.06
How insecure did you feel during the experiment? -0.07 0.36 -0.43 0.01
How stressed did you feel during the experiment? -0.77 -0.47 -0.29 0.07
How bored did you feel during the experiment? -0.97 -1.09 0.12 0.38
How relaxed did you feel during the experiment? 0.51 0.44 0.08 0.58
How content did you feel during the experiment? 0.51 0.17 0.35 0.01

The responses are encoded by Not at all (-2), Almost not at all (-1), Not sure/Neutral (0),
Quite a bit (1), and Very much (2). The MPP and IP columns indicate average values across
all participants (n = 282). The p-values are derived from an unpaired two-sample t-test with
two-sided alternative.

5 Discussion

Cognitive abilities to assess beliefs in form of subjective probability distributions were found
to be limited (Hogarth, 1975). This renders elicitation burdensome and threatens the validity
of probabilistic statements in economic modeling and expert forecasting altogether. Proba-
bilistically sophisticated preferences like subjective expected utility (Savage, 1954) postulate
that agents act “as if” they hold a belief in form of a probability distribution. However,
choices can be consistent with a probability distribution, while the agent is unable to ex-
press this distribution explicitly.

In a general framework for the elicitation of real valued beliefs, we show how to elicit
the entire subjective probability distribution, which provides more information than eliciting
a discrete distribution on pre-defined intervals. Acknowledging the complexity of reporting
and scoring probability distributions, we propose to use MPP with linear incentives instead.
Similar to IP, this procedure reveals a finite set of CDF points of the belief distribution.
Conveniently, point predictions rely on simple incentives, adapt flexibly to heterogeneous
beliefs, and do not influence beliefs by providing anchors through pre-defined intervals. As a
drawback MPP requires a finite support of the underlying subjective probability distribution
(or a sufficiently high initial endowment to approximate distributions with infinite support)
and cannot bound the tails of distributions beyond the elicited quantiles.

The bounded scores for eliciting the entire distribution or MPP can be of separate in-
terest for expert forecasting. A profit maximizing expert with limited liability (Carroll,
forthcoming; Osband, 1989), can be properly incentivized by bounded scores. In this con-
text, additional complexity should be manageable, and eliciting the full density might be
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preferable.
The experimental evidence suggests that eliciting point predictions is convenient and

reliable. At the current point, it is not clear for which particular application one should
prefer probabilistic reports or point predictions. We find that MPP is more adequate under
heterogeneous beliefs that complicate the construction of uniformly optimal pre-defined in-
tervals. Under homogeneous beliefs and if anchoring is desired or no concern, IP may be more
suitable. In contrast to elicitation using IP, we do not observe overconfidence (too narrow
distributions) when asking for MPP, suggesting that overconfidence may at least partly be
a relic of the elicitation design, instead of an intrinsic property of preferences. Applications
that impede correction of overconfidence after the elicitation, might benefit from eliciting
MPP rather than IP.

This paper considers probabilistically sophisticated preferences that allow beliefs to be
represented by a single probability measure. For a related mechanism that considers ambi-
guity averse preferences see Schmidt (2019).

We abstracted from rounding in this study. However, rounding is a common feature
observed for discrete probability questions in surveys and experiments (Bissonnette and
de Bresser, 2018; Kleinjans and Soest, 2014; Manski and Molinari, 2010). While we would
expect most of the findings on rounding to transfer to point predictions, including its useful
aspects of signaling ambiguity or skill, the negative consequences (like systematic biases in
the tails) are arguably less severe.

It is possible to ask for the maximum and minimum of the support before eliciting IP.
Unfortunately, there exists no proper scoring rule for those properties, which disqualifies this
procedure for many applications. Nevertheless, using unincentivized maximum and minimum
statements or a single point estimate to construct intervals may improve the performance of
belief elicitation using IP.

While theoretically any number of quantile levels could be elicited, eliciting three quan-
tiles (e.g., at the levels of 25, 50 and 75%) seems adequate for many applications. It directly
identifies a measure of central tendency (the median) and of uncertainty (the interquantile
range) without parametric assumptions. At the same time, it requires only a reasonable
amount of time and cognitive capacity. If the elicitor is more interested in the tails of the
distribution, other specifications of MPP might be more suitable. It is, however, an open
question if the experimental findings of our design are robust with respect to the number
and extremity of quantile levels. Another interesting question is, how belief elicitation via
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MPP performs with different subject pools and in circumstances where outcome dependent
incentives are infeasible.
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Appendix

A Proofs

We provide formal statement of the main results. Let the state space be denoted by Ω = R× [0, 1],
where each state ω = (y, r) consists of the real valued y and some randomization device outcome
r. An event E is a subset of Ω. Let P bet the set of eligible probability measures for y on R. We
call a mapping T : P �→ X into the metric space X a property. Let X be the action space of the
agent, and x ∈ X the report issued by the agent. A function s : X × R �→ R is called a scoring
rule. For any scoring rule within the binary lottery procedure in Section 2, every report x ∈ X can
be associated with a binary act aEb that pays prize a if the event E = {(y, r) ∈ Ω | s(x, y) > r}
realizes and b otherwise.

Regularity Conditions 1 (Probabilistically Sophistication (Machina and Schmeidler, 1992)).
There exists a probability measure PΩ on Ω such that for all events E and E′ and all payoffs a � b

aEb � aE′b ⇐⇒ PΩ(E) ≥ PΩ(E′),

and PΩ = P0 × U [0, 1] for some P0 ∈ P.

Regularity Conditions 1 hold for an expected subjective expectation maximizing agent, if the
unknown utility function depends only on the obtained prize and is otherwise independent of the
uncertain outcome y.

We call a scoring rule s proper for the property T : P �→ X if the property is maximizing the
expected score for all eligible probability distributions, T (P) = arg maxx∈X s(x,P) for all P ∈ P.

Respectively, a property T is called elicitable if there exists a proper scoring rule for it (Bellini and
Bignozzi, 2015; Gneiting, 2011; Ziegel, 2016).

For completeness, we provide the following result that is mostly equivalent to Theorem 1 in
Hossain and Okui (2013).

Lemma 1 (bounded scoring rules). For every elicitable property T : P �→ X with a bounded proper
scoring rule, there exists a scoring rule s(x, y) such that

arg max
x∈X

as(x,y)>rb = T (P0).

Proof. Let s′(x, y) be the bounded proper scoring rule for T with s′(x, y) ∈ [m, M ] P0-almost surely,
where m, M ∈ R. A transformed score s(x, y) := s′(x,y)−m

M−m maps P0-almost surely into the unit
interval [0, 1] and is also proper for T .
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Further, PΩ(s(x, y) > r) = Ey∼P0 [Er∼U [0,1][V(s(x, y) > r)]] = Ey∼P0 [s(x, y)]. Thus, the agent’s
optimal report coincides with that of a risk neutral expected score maximizer, which is T (P0).

Lemma 2 (Entire distribution). For absolutely continuous measures P with densities bounded by
B ∈ R, it holds that the scoring rule

s(p, y) = 2p(y) −
∫

Ω
p(w)2dw + B

induces arg maxp∈P as(p,y)>3Brb = p0, where p0 is a density of P0.

Proof. The quadratic scoring rule is proper for distributions communicated in form of densities
(Gneiting and Raftery, 2007). Further,

∫
Ω p(w)2dw ≤

∫
Ω Bp(w)dw = B and thus s(p, y) ∈ [0, 3B].

The result follows with Lemma 1.

Lemma 3 (Multiple Quantiles). Let αi ∈ (0, 1) for i = 1, . . . , n, and let P be the class of absolutely
continuous probability distributions with positive density on finite support of length l. The scoring
rule

s(x, y) = 1
ln

n∑

i=1





1 − (1 − αi) |xi − y| xi > y

1 − αi |xi − y| xi ≤ y

induces as best response the quantiles of level α1, . . . , αn.

Proof. The sum of proper scoring rules is proper for the multivariate property of a set of quantiles
(compare Fissler and Ziegel, 2016). The quantiles are well-defined and the score bounded by
assumption. The result follows with Lemma 1.
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B Results

In this section we provide the full set of results. Throughout, the error bars show 95% confidence
interval in figures and parentheses show the respective p-values in tables.
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