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Strategic Planning for Integrated Mobility-on-Demand and Urban Public Bus
Networks

Konrad Steiner∗,a, Stefan Irnicha

aChair of Logistics Management, Gutenberg School of Management and Economics,
Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

Traditional planning for urban transportation usually assumes a given or calculated split between
motorized individual transport and public transportation. However, app-based services and ride-
sharing in the field of mobility on demand (MoD) create an intermediate mode of transport, whose
long-term role in the urban mobility landscape and within public transport systems is not fully un-
derstood as of today. If the public transport industry wants to capture the opportunities these new
services offer and mitigate the risks that come with them, planning tools for integrated intermodal
networks are indispensable.

In this work, we develop a strategic network planning optimization model for bus lines that
allows for intermodal trips with MoD as a first or last leg. For an existing public transport network,
we decide simultaneously on the use of existing lines and segments in the future fixed-route network,
on areas of the city where an integrated MoD service should be offered, on how MoD interacts with
the fixed route network via transfer points, and on passenger routes.

The objective is the optimization of the financial performance of the resulting network, including
the additional demand and revenues induced by enhanced network coverage. The model provides
several options for modeling MoD costs, which allows for linking with operational models such as
dial-a-ride. Moreover, our model considers a range of additional important strategic decisions like
subsidies for a potential private sector operator of MoD services and the interplay between the
demand for public transport and the role of MoD.

We develop a path-based formulation of the problem and a branch-and-price algorithm as well
as an enhanced enumeration-based approach to solve real-world instances to proven optimality.
The model is tested on instances generated with the help of real-world data from a medium-sized
German city that currently operates around 20 bus lines.

Key words: mobility on demand, public transport, strategic network planning, intermodal
networks, multimodality, dial-a-ride, branch-and-price

1. Introduction

Traditional planning for urban transportation usually assumes a given or calculated split be-
tween two primary modes of transportation: motorized individual transport and public transporta-
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tion. However, new trends in mobility on demand (MoD), in particular ride-sharing and the app-
based services offered by companies such as Uber and Lyft, induce a new mode of transport that
sits between those existing modes. The full implications of this new mode, including its long-term
role in the urban mobility landscape and within public transport systems, are not fully understood
as of today.

On the one hand, there is huge potential for MoD service operators to decrease dependence
on car ownership and to provide better access and egress to public transport, i.e., solving, or at
least reducing, the last-mile problem. Within areas of lower demand and during off-peak times,
MoD operators may provide less costly yet more attractive services than those currently offered by
classical public transport companies. These characteristics have recently motivated the Interna-
tional Association of Public Transport (UITP) to create a new offering named “Digital Platforms”
for players like Door2Door, Citymapper, and Uber, and thus to provide a formal framework for
collaboration (UITP, 2017). On the other hand, for the public transport systems, there is a risk of
revenue decline due to the new competition. Studies like Martínez (2015) even raise the question
if urban transportation without classical public transport could be possible. The first showcase for
the potential of MoD services to disrupt entire industries is the taxi business, which has faced sig-
nificant revenue decline since the introduction of the new competition (Economist, 2015). Mainly
as a consequence of the opposition from the taxi sector, providers of MoD are currently facing
strong regulations that restrict their operations (e.g., Economist, 2017). However, we believe that
bans and restrictive regulations will not be a long-term solution and that the overall market for
on-demand mobility will grow.

Of course, it is not clear which players will offer MoD-based integrated public transport: It
may be done by the likes of Uber and Lyft, or other technology platform providers who do not
offer mobility solutions today, or car manufacturers, or rental companies that will establish the
transition into this market. The alternative is that public authorities will start offering these
services themselves. While it is not certain when exactly this will happen, it seems unlikely that a
powerful technology-enabled product like on-demand mobility will be blocked from the mass-market
in the long run. Furthermore, the potential of MoD could grow even stronger once it is merged with
autonomous vehicles, which will lower operational costs and enable more efficient central planning
of transportation systems.

In this paper, we look at the urban transport system from a holistic perspective, with a view to
supporting cities and public transport operators in gaining a better understanding about potential
future network structures. The key challenge for the public transport industry is to capture the
opportunities these new services offer and to mitigate the risks that come with them. We hypothesize
in line with recent studies like (masabi, 2018) that the most promising way to achieve this is
integrating classical public transport and MoD into a combined system that offers high-quality
services and flexibility to the customers based on their needs.

1.1. Scope and application context
In the following, we develop an optimization model that facilitates strategic planning of a public

transport bus network. The model incorporates the possibility of intermodal trips using MoD as a
first and/or last leg. The terms intermodal and multimodal are used in line with the most common
convention (see, e.g., Willing et al., 2017), where multimodality describes the general concept of
travelers having access to different modes of transport, and intermodality the special case where at
least two different modes are combined within a single trip.
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We decide simultaneously on the use of existing or new bus lines or segments in the future
fixed-route network, on areas of the city where an integrated MoD service should be offered, on
how MoD interacts with the fixed route network via transfer points, and on passenger routes. We
develop a path-based formulation of the problem and, for solving it, a branch-and-price algorithm
as well as an enhanced enumeration-based approach. Our computational analysis shows that, with
both types of algorithms, real-world instances can be solved to proven optimality.

The primary application of this model will be the review of an existing public transport net-
work, since most regions that are ready for this additional layer of intermodality already have
an established public transport network. We expect changes to happen incrementally. However,
there is certainly the possibility of some cities leaving out stages of the “public transport evolution”
and introducing intermodal trips including MoD right from the start. An adjusted version of our
model could also be applied in conjunction with further network planning models when a network
is designed from scratch, this is discussed in more detail in Section 3.4. Since bus operations have
a lower level of fixed costs and a higher degree of flexibility than train operations, we envisage
the model to be applied for different times of the day or for different weekdays. It seems to be a
reasonable assumption that future fixed-route components of public transport networks will look
different on a weekend than during the week, or in the morning and afternoon peak compared to
off-peak times. Our model may also be applied to analyze where it could make sense to subsidize
on-demand mobility and thus provide strategic direction for the regulator and transport authorities.
It may help to assess the interplay between the demand for public transport and the role of MoD.
The above aspects are discussed further in Section 3.4.

1.2. Key decisions and interrelationships
For designing an integrated bus transport network that includes MoD operations, the funda-

mental question is what decision variables are required and what dependencies between them have
to be considered. For our model, they are summarized in the following five paragraphs:

Decisions on the existing public transport network. Since we focus on the review of an existing
network, the key decision is which segments of the existing network should still be included in the
future network.

Zone-based MoD decisions. While classical network design models decide on connections to include
and on line plans, we incorporate MoD decisions based on zones, i.e., on areas where the MoD
services will be provided. On the one hand, efficiency of MoD depends on vehicle utilization which
is higher when entire areas are serviced and not just selected connections. On the other hand, the
definition of zones can increase the usability and popularity of the overall system because zone-
based MoD consistent with districts can be visualized and communicated easier than scattered
connections.

Decisions influencing MoD costs. In addition, costs for MoD legs behave differently than for classi-
cal services with fixed routes and frequencies. An exact routing of MoD vehicles is neither feasible
(Posada et al. (2016) can only solve instances with up to five requests for the Integrated Dial-a-
Ride Problem (IDARP) with timetabled fixed route service) nor required for a strategic network
optimization. Instead, we differentiate between cost aspects that result directly from the network
structure and further aspects impacting the desired service level (e.g., the lead time between book-
ing and start of the trip). The key network-dependent aspect impacting costs is the utilization of
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MoD vehicles. Modeling such a dependency on utilization requires at least a rough knowledge of
where passengers start or end their trips and where they transfer to or from MoD. Hence, we also
include decisions on transfer points into the new model, i.e., at which stations passengers inter-
change between MoD and the fixed-route network. Our modeling of costs further allows for the
incorporation of fixed costs, e.g., for infrastructure, as well as incremental costs associated with
servicing the induced demand. This is discussed in detail in Section 3.2.

Decisions influencing travel demand. A significant change in service offering like the provision of
MoD will certainly impact travel demand. Improved availability with respect to location and time,
together with shorter travel times, motivate more people to travel by public transport. However,
possible direct MoD trips from origin to destination at market price will also have a reciprocal effect
for public transport companies. Ideally, this step would be based on an assessment per OD-pair,
both for pairs already served by the public transport network and for those that are newly covered.
Due to the modeling complexity of this endeavor and the challenge of obtaining reliable demand
data, in particular for relations that currently do not show any observed public transport trips, we
have opted for a simplified modeling approach: In a first step, we determine the base demand for
public transportation that does not change depending on the offered MoD services. In a second
step, we estimate induced demand caused by an improved service offering. Both, base demand and
induced demand are then included as input parameters for the model. More precisely, we allow a
predetermined level of induced demand per MoD zone and consider its effects on revenues and costs.
Again, OD-specific characteristics can be included in the demand modeling stages. We believe that
we do not lose a decisive level of detail, while the model is kept of moderate complexity and thus
still allows for solving real-world instances.

Decisions on passenger itineraries. Furthermore, the routing of passengers is another key modeling
aspect as it impacts operational costs as well as the service level. The literature differentiates
between passenger route choice, where passengers choose their routes in a given network based
on their preferences, and the assignment of passengers to routes, e.g., by an optimization model
according to some given objective. For the design of the combined MoD and public network, we are
in a hybrid situation: On the one hand, the MoD service provider can almost completely influence
(within a reasonable range) the routing on the MoD legs. As long as the overall travel chain is
seamless and convenient, passengers will accept being assigned a specific first and/or last feeding leg
with MoD, even if a transfer point passed is not on a shortest path through the overall network. On
the other hand, once passengers access the fixed-route network, they choose their routes according
to individual preferences, meaning that a central assignment will no longer be accurate. We deal
with this characteristic by allowing the model to assign passengers to the MoD routes as long as
a threshold on overall travel time is not exceeded. Within the fixed network, our model routes
passengers via the shortest path in order to estimate and ensure an acceptable overall travel time.

The remainder of this paper is structured as follows: In Section 2, we review the related lit-
erature. We discuss the modeling of MoD and present our new model and possible extensions in
Section 3. The solution approaches based on a branch-and-price and an enhanced enumeration-
based algorithm are presented in Section 4. Subsequently, we discuss selected model outputs and
their applications to real-world planning questions in Section 5. We conclude by summarizing our
findings and discussing possible next steps for research on integrating MoD into strategic public
transport network planning in Section 6.
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2. Literature review

The following literature review is divided into four parts covering publications demonstrating
the potential impact of MoD systems in Section 2.1, multi- and intermodal network planning in
Section 2.2, operational modeling of MoD services in Section 2.3, and a discussion of the positioning
and contribution of the paper at hand compared to other works in Section 2.4.

2.1. The potential impact of MoD systems
Over the past few years, multiple prominent studies documenting the current and expected

future rise of MoD solutions have been published. A few examples of the publishers are inter-
governmental organizations and national associations like the International Transport Forum (ITF,
Martínez, 2015) and VDV (2015) as well as leading universities, e.g., the MIT and Stanford (Alonso-
Mora et al., 2017; Mitchell, 2008; Pavone, 2016). The ITF report, which focuses on a theoretical
case study in Lisbon, has been widely discussed. The authors conduct a simulation based on real
trip data and analyze the effects of introducing a fleet of self-driving vehicles on a city-wide level,
once as a ride sharing system and once as a car sharing system where passengers use the same cars
sequentially. These services are assumed to replace the trips currently undertaken by private car
and by bus, and in one extreme scenario even today’s metro trips. While this is a multimodal setup,
no intermodality is considered and each trip is realized with a single mode. The outcome shows
that a ride-sharing system could satisfy current demand with only 10.4% of today’s car fleet. This
number would only rise to 12.8% when also replacing the metro (for a car sharing system the num-
bers are 16.8% without replacing and 22.8% with replacing the metro, respectively). Furthermore,
this could be achieved while reducing average waiting and travel times significantly.

The Association of German Transport Companies (VDV) also sees the pressure on classical
public transport rising due to the additional competition by these new offers (VDV, 2015). They
recommend that the public transport industry acts quickly while leveraging public transport’s core
competency to aggregate high numbers of passengers for affordable prices.

Alonso-Mora et al. (2017) look at a similar experiment in New York and provide a mathematical
model that designs the vehicle routes while still solving real-world instances. The findings, both in
terms of the reduced number of vehicles required and the resulting waiting time, support those of the
ITF report. Mitchell (2008) focuses more on the conceptual side and depicts a differentiated MoD
concept based on a variety of vehicle types and focuses on MoD as a first or last-mile solution, i.e.,
on an intermodal context. Finally, Pavone (2016) analyzes a full and autonomous MoD solution,
however mentions MoD as a last mile solution as a direction for future research.

In short, these studies show that MoD—in particular when combined with autonomous vehicles—
has the potential to turn the urban mobility landscape upside down. This underlines the necessity
for public transport operators to actively shape the process of integrating MoD and public transport
systems to maintain relevance.

2.2. Multi- and intermodal network planning
A comprehensive survey on the general planning and design of public transport networks is

provided by Farahani et al. (2013). In particular, their Section 3.3 on the Multimodal Network
Design Problem (MMNDP) provides a collection of relevant references. Note that none of the
MMNDP papers considers intermodal passenger trips, and thus the pertinent literature becomes
much more sparse as also identified by Farahani et al. (2013, Section 7.3.3). Another survey with
a focus on line planning is presented by Schöbel (2011).
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The line of research on the IDARP does include intermodality by combining fixed and flexible
public transport services. A recent overview can be found in (Posada et al., 2016), where the authors
schedule flexible and fixed services simultaneously. This approach creates significant complexity so
that only instances with five requests are solved.

A more strategic assessment on designing an intermodal network is provided by Aldaihani
et al. (2004), who model flexible feeding services via a fixed-grid network. This analytical model
optimizes the number of MoD zones as well as the frequencies of the fixed services. The overall
setup in (Uchimura et al., 2002) is of a strategic nature as well: A hierarchical network with three
layers is sketched with MoD as the third layer for distributing passengers within communities. The
actual optimization only focuses on the third level once the network structure of levels one and two
is given.

The possible interaction between autonomous on-demand services and public transport is stud-
ied in (Salazar et al., 2018). In the first step, passenger and vehicle flows are optimized with
a multi-commodity flow model for an integrated autonomous MoD and public transport system.
Here, the public transport network is fixed and the MoD vehicles have no specific rules on their
service areas or on transfer points to the public transport network. In the second step, market
dynamics from the customer and MoD operator perspective are modeled in order to determine an
optimal pricing and tolling scheme with respect to social welfare. Realistic instances can be solved
with this approach also for the intermodal flow problem due to a mesoscopic approach that assumes
one person per MoD vehicle and simplifies the modeling of transfers compared to (Posada et al.,
2016). Similar to an autonomous fleet, we also assume in this paper that MoD operations are
steered centrally, i.e., that rules on operating areas, allowed transfer points etc. can be imposed.

Shen et al. (2018) also assess the integration of an autonomous MoD system with public trans-
port. Agent-based simulation is applied to study the consequences of replacing certain bus routes
with low ridership figures by MoD services. While the bus routes of the public transport system are
fixed a-priori, a wide range of scenarios is analyzed with respect to service quality, total distance
traveled as well as financial aspects. The authors find that there are integrated scenarios that si-
multaneously improve the service quality in all three dimensions. However, there are also scenarios
that show an aggravation of the system performance, which underlines the necessity for decision
support on determining which areas to serve by which mode.

Li and Quadrifoglio (2010) provide decision support on whether to set up a fixed-route or a
demand responsive service with the option of changing between these two service types during the
day. Single-vehicle operations are assumed for the demand responsive service and a simulation
is performed to determine total passenger travel times for both service types. The computations
show that demand responsive services provide shorter travel times for lower demand densities,
hence confirming our approach of considering MoD as a valid alternative to fixed-route services in
particular in areas of lower demand. Navidi et al. (2017) study a similar setup with agent-based
simulation and also allowing higher numbers of MoD vehicles in order to realize a zero rejection
rate. The results of the simulations show that the demand responsive service provides a superior
service level to fixed line services while also being more cost effective in areas of lower demand.

Häll et al. (2008) and Edwards et al. (2012) present simulation approaches on networks allowing
for intermodal trips with MoD as a first or last leg. The paper of Häll et al. includes a detailed
discussion of the interface between fixed and flexible services and provides a study conducted
with the simulation software LITRES-2 for the Swedish town Gävle. One interesting finding is
the importance of transfer point placement, which supports our choice of including decisions on
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transfer point locations explicitly in the optimization model. Edwards et al. (2012) work with
a ‘network-inspired framework for integrated transport systems’ that combines traditional public
transport with MoD systems and applies this approach to the city of Atlanta. The study concludes
that particularly areas of lower density can benefit from an improved service level, which is enabled
by the offering of MoD.

Another research area relevant in the context of MoD is dynamic ride-sharing, where travelers
with similar itineraries are grouped together in the same vehicle, but vehicles are still driven by
private drivers. On the one hand, the models developed for dynamic ride-sharing are very similar
to MoD system with a dedicated fleet. On the other hand, it might make more sense to set up
an MoD system based on ride sharing, in particular if car penetration is high, e.g., in rural areas.
Stiglic et al. (2018) study an integrated system that offers point-to-point ride-sharing as well as
ride-sharing to a transit station or even park-and-ride, where the driver parks his car and uses
public transport for the remainder of his journey. In a first step, possible matches are identified
based on the required service level. In a second step, an optimization model is set up to maximize
the number of matched riders. The computational results show how additional flexibility of drivers,
an increased number of system participants, as well as increased train frequencies positively impact
the number of successful matches. More general background on dynamic ride-sharing is presented
in the survey of Agatz et al. (2012).

Rothenbächer et al. (2016) design a freight network for combined transport, i.e., each request
can be shipped by a combination of road and rail transportation. The presented optimization
model decides on the intermodal routing of a given set of requests as well as on hub locations for
the transfers and frequencies for the rail connections. Like in our case, a path-based formulation is
chosen and a branch-and-price algorithm is implemented that allows for solving realistic instances
in reasonable computation time.

Readers interested in more general literature on multi- and intermodal network planning are
referred to (Chowdhury and Ceder, 2016) for an assessment of the user’s perspective, and to (Willing
et al., 2017) for a view on the existing inter- and multimodal mobility landscape and ideas on how
it can be enhanced in the future. Further, Jittrapirom et al. (2017) provide an overview on Mobility
as a Service (MaaS) systems, that always feature MoD elements, including an extensive research
agenda that considers aspects like demand modeling, business models etc. The journey planning
aspects of including intermodal trips with potential MoD legs are discussed in (Friedrich and Noekel,
2015) and (Horn, 2004). Finally, a more holistic view in context of mobility-oriented development
of cities can be found in (Smolnicki and Sołtys, 2016) and referenced papers.

2.3. Operational modeling of mobility on demand
Wang and Odoni (2016) focus on the last-mile problem where passengers travel from a public

transport stop or station to the final destination. However, the public transport network itself is
not in scope of their study. Instead, they derive analytical expressions for the expected waiting
time until boarding and expected riding times and evaluate them against a simulation approach,
in the first step for the unit-capacity case, i.e., one passenger per vehicle, and in the second step
for vehicle capacities up to 20. The main independent variables considered are the headway of the
public transport service, the batch size of customers alighting from the train or bus, the average
distance passengers travel to their final destination, the fleet size of the last-mile service, as well as
additional statistical parameters. The computational studies show how expected waiting times rise
when the utilization of the service increases. These insights can be used to determine an appropriate
MoD fleet size to achieve a desired service level.
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A similar setup for a stand-alone MoD service is analyzed by Diana et al. (2006) where the
fleet size is analytically estimated based on service level requirements. The key inputs are the
distribution of demand as well as time windows for the passengers. The output is then compared to
a simulation model in order to validate the analytical expressions. The computational study shows
how the number of required vehicles increases with a growing number of requests and for smaller
time windows. Additionally, it can be observed from (Diana et al., 2006, Table 1 in Section 5.3)
that the number of vehicles per request actually decreases with a growing number of requests due
to better utilization, which supports our approach of carefully reflecting on utilization aspects in a
strategic model.

Another modeling approach for a stand-alone MoD service can be found in (Martínez et al.,
2015). Passengers with close origins and destinations are clustered in a first optimization step and
assigned to vehicle routes in a second step. The last step is the maximization of the operational
profit under the condition that passenger requirements on travel duration and arrival time are
respected. This process also permits the determination of a suitable fleet size.

Archetti et al. (2017) present a simulation study to assess the performance of an MoD system
in terms of costs, service quality, and travel time depending on demand density. Standard buses
and private cars are available as alternatives and the authors simulate the mode choice of users in
their approach.

The classical approach to optimize the routing of demand responsive services is focused on
solving the Dial-a-Ride Problem (DARP). Surveys on the DARP are presented in (Cordeau and
Laporte, 2007) for literature up to 2007 and in (Ho et al., 2018) for more recent works.

2.4. Positioning and contribution of this work
The main contribution of this paper is the development of a strategic network planning opti-

mization model that allows for intermodal passenger trips with MoD as a possible mode for access
and egress legs. Decisions on both the fixed public transport network and the MoD operations are
taken simultaneously. To our knowledge, no model with these combined characteristics currently
exists.

We briefly reference literature on the two additional important modeling aspects that were
discussed in Section 1: the inclusion of dynamic demand and the balancing between passenger
routing and assignment. Klier and Haase (2014) design a network and explicitly model passenger
paths between OD-pairs, which allows assigning specific demand levels to each path based on
a demand model that is calculated before the optimization step. Since the inclusion of MoD
significantly changes the public transport offer, dynamic demand approaches are required in our
case as well. Regarding passenger routes, Goerigk and Schmidt (2017) and Schmidt and Schöbel
(2015) provide discussions on the differentiation between route assignment and route choice. In the
first case, the model routes passengers to achieve an optimal objective value. In the second case,
passenger route selection is reflected in the model, typically in a bi-level modeling approach. The
authors develop two integrated integer programming formulations that allow for passenger route
choice. As discussed, a combination of these two approaches fits best in our context: On the one
hand, system operators will be able to dictate the MoD legs of the passengers within a reasonable
range. On the other hand, passengers will choose routes according to their own preferences once
they have entered the public transport network.
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Table 1 compares our model to a selection of the existing literature discussed above in Sec-
tion 2.2.

3. Optimization model for intermodal networks with MoD

This section on the optimization model for intermodal networks with MoD first introduces two
important foundations for the model: first, the passenger movements through the network, as they
correspond to the central path variables of our model, in Section 3.1, and second a discussion of
MoD decisions and the modeling of costs and travel times in Section 3.2. Subsequently, we provide
the integer linear programming (ILP) formulation in Section 3.3 and comment on further model
applications and extensions in Section 3.4.

The following notation is used in the remainder: The current public transport network is given
by an undirected graph (V ∪W, E) with vertices V ∪W and edges E defined as follows:

k, l ∈ V Vertices that represent origins and destinations of passenger trips.
(k, l)∈OD⊂V × V The set of OD-pairs.
i, j ∈ W Vertices that represent the current stops of the public transport net-

work. We assume that V and W are disjoint even though some vertices
may refer to the same physical location.

e ∈ E(W) Edges (with both endpoints in W) that represent the direct connec-
tions (two consecutive stops) of the current public transport network.

s ∈ S ⊂ 2E(W) Pairwise disjoint segments (=subsets) of edges that represent the parts
of the network that could be removed (in one piece). We refer to these
as omission segments. A significant set of edges, the core network, is
usually not under discussion.

The new possibilities to offer zone-based MoD services are described by:
z ∈ Z Potential disjoint MoD zones that cover the area in scope. Hence, for

every k ∈ V there is a unique zone zk ∈ Z indicating the inclusion of
the corresponding physical location in the zone.

Tz ⊂ W Subsets of vertices that represent potential transfer points Tz for every
zone z. Transfer points are stops of the current network and can be
used to connect the public network with MoD. We explicitly allow
i ∈ Tz1∩Tz2 for a specific transfer point i and distinct zones z1, z2 ∈ Z.
Particularly, the physical location of a transfer point i ∈ Tz can be
located outside the physical zone z.

(k, i), (j, l) ∈ E(W,V) Edges (with one endpoint in V and one in W) that represent ac-
cess legs (k, i) and egress legs (j, l). E(W,V) is the disjoint union of
E(W,V)walk and E(W,V)MoD, i.e., we assume that one can a priori
decide for each such leg whether passengers walk to the stop (short
distance) or must use the MoD service (longer distance). For the
latter case, it is required that i ∈ Tzk or j ∈ Tzl holds, respectively.

3.1. Passenger movements
For each OD-pair (k, l) ∈ OD, our model must ensure that passengers can travel between k and

l with a similar service level as in the existing status quo in the future network. For that purpose,
we assume that in the current network passengers have chosen a path that is optimal for them, i.e.,
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a quickest connection. If passengers do not use their current route in the future network, we require
the new total travel time to not exceed today’s travel time by more than a given threshold θ (e.g.,
θ = 10%). Let Pkl denote the set of paths from k to l consistent with the passengers service-level
requirements.

We describe the paths P ∈ Pkl using public transport in more detail now. For such a path P ,
the part realized by walking or MoD is completely determined by the access and egress transfer
points i ∈ W and j ∈ W. Thus, the passenger path P can have a maximum of three legs: First, an
access leg (k, i) ∈ E(W,V), which could either be walking to a close stop or an MoD leg. Second,
a public transport leg (i, j) in the fixed-route network given by a path in (W, E(W)) (here the
case i = j is possible for combining two MOD legs or MOD and walking). The third leg is an
egress leg (j, l) ∈ E(W,V), which can again be realized by walking or by MoD. Here, we assume all
passengers traveling from k to l decide for the same mode (walking or MoD) from k to i and from
l to j, respectively.

For some OD-pairs, it is also possible that in the future network the passengers use only one
direct MoD trip from k to l. For such a pair (k, l) ∈ OD, the trip is denoted by P kl

dir ∈ Pkl. For
the sake of convenience, we also define the subset Pkl

s of paths Pkl that passes through at least one
edge of an omission segment s ∈ S. Finally, for P ∈ Pkl \ {P kl

dir}, the two access and egress transfer
points are denoted by iP and jP .

3.2. Modeling of MoD decisions and costs
As motivated in the introduction, MoD decisions are not based on edges and lines like in

classical network planning approaches, but on zones. The overall area in scope is divided into
disjoint zones Z. Defining zones is certainly part of the problem modeling, and we further analyze
the impact of different zone sizes in the computational study in Section 5.3. For the moment, we
assume potential zones to be given and fixed. For each zone z ∈ Z, the task is to decide whether
and how MoD operations are offered.

Since the accurate inclusion of MoD costs in a strategic model is one of the key challenges when
planning an intermodal network, we discuss this topic in some more detail now. Our fundamental
decision, per chosen zone z ∈ Z, is the choice of a subset of transfer points I among those that are
available (I ⊆ Tz). We assume that only some subsets I are feasible choices. For example, I must
be non-empty and one may want to limit the number of transfer points to a maximum cardinality
Imax so that only sets I ∈ Tz with |I| ≤ Imax are allowed. This is captured in the definition of the
set T I

z ⊂ 2Tz .
Clearly, the desired service level impacts MoD costs. Specifically, this includes the (average)

lead time between booking and start of the trip, the discrepancy between ideal and actual departure
or arrival time, the temporal integration with the timetable of the fixed-route network, the level
of permitted detour, the required walking distance if pick-up or drop-off points are used, and the
aspired share of satisfied requests. These aspects do not depend on the decisions our model is
taking and can therefore be treated beforehand. Indeed, we envisage our model to be applied
in conjunction with more operational models that are tailored to the characteristics of the MoD
system being designed. The outputs on MoD costs and times of the operational models serve as
input parameters to the strategic model we present here. Hence, our optimization model is flexible
to include a large variety of aspects without further increasing in size.

We now discuss in more detail that all remaining important cost and timing aspects can be
included, in particular:

(i) MoD infrastructure costs per zone
11



(ii) MoD costs associated to zone-based induced demand
(iii) MoD leg costs for the base demand
(iv) Resulting passenger travel times

MoD infrastructure costs per zone. For a zone z ∈ Z, any infrastructure that needs to be set up and
other general investments that generate fixed costs clearly depend on the chosen transfer points.
The model considers such fixed costs explicitly as costs cfix

zI based on the decision which transfer
points I ∈ T I

z need to be established.

MoD costs associated to zone-based induced demand. Recall from Section 1.2 that our model cap-
tures the already existing demand of the public transport network, which we refer to as base demand,
and additional demand that is generated by the extended service offering, the induced demand. We
treat these two types of demand separately in the MoD cost modeling starting with the induced
demand.

More transfer points per zone lead to more options for the passengers, and thus positively impact
induced demand. Hence, we assume that it is possible to pre-calculate induced demand dziI per
zone z and transfer point i depending on the set of offered transfer points I. Once the demand
level dziI has been modeled, additional cost and revenue parameters cziI and rziI can be calculated
and included in our model.

MoD leg costs for the base demand. As the cost (or revenue) of induced demand is already included
(see above), the remaining modeling aspect is the incorporation of MoD leg costs for the base
demand. Recall that base demand is given per OD-pair (k, l) ∈ OD as a number of passengers dkl.
Clearly, one can consider the zones zk and zl separately. We therefore discuss MoD leg costs for
the zone zk ∈ Z for an origin k ∈ V only.

First, we approximate the effective distance traveled by MoD. By using the word ‘effective’ we
account for the fact that actual distances traveled may differ due to detours when additional pas-
sengers are picked up. We include this effective distance by capturing start point k and the transfer
point i to the fixed-route network explicitly in the model using a cost per passenger parameter cki.
It makes sense that these cost parameters are on a passenger level because costs for on-demand
services depend heavily on the number of serviced passengers.

Second, density and structure of demand strongly impact efficiency, as higher densities result
in more pooling potential and therefore higher vehicle utilization and fewer detours. This aspect
cannot be explicitly and exactly included without significantly increasing the complexity of modeling
routes. However, we can still capture the MoD system’s efficiency partly in the input parameters
of our model. On the one hand, the set of transfer points I ∈ T I

z directly impacts the efficiency of
the MoD operations within the zone, since feeding all passengers starting from z into one transfer
point allows significantly more consolidation than feeding into two or even three transfer points.
We have thus opted for including the chosen set of transfer points I in an inefficiency contribution
cineff
zI for the base demand. The cost cineff

zI is in general higher the more transfer points are selected
and the more spread out they are. On the other hand, local system efficiency can be partly taken
into account when computing cki depending on the likely MoD demand levels per zone z.

Resulting passenger travel times. Travel times are relevant for identifying possible paths through
the network (see Section 3.1) and they follow a similar logic as explained for MoD costs. As we
model passenger paths explicitly only for the base demand dkl, they are only required in this case.
The travel time to get from k to a transfer point i (or from transfer point j to l) is based on the
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distance between the stops and adjusted based on preprocessed expected demand levels to account
for efficiency. Furthermore, expected initial waiting times have been included in the travel times.

Overall, we can conclude that our model is able to cover the majority of factors that influence
MoD costs. Since this is based on the actual operational costs of providing MoD, it represents the
most complex setup. In practice, there might be simpler commercial agreements with an operator,
e.g., fixed remuneration per passenger trip, that simplify the modeling from the perspective of the
network planner.

3.3. Path-based formulation
Our path-based formulation implicitly captures the complicated rules for allowed passenger

paths through the network. Three types of binary decision variables are required:
xs ∈ {0, 1} indicates whether an omission segment s ∈ S is included in the future network

(=1), or not (=0).
yzI ∈ {0, 1} indicates whether I ∈ T I

z is the set of transfer points of an MoD zone z ∈ Z.
λkl
P ∈ {0, 1} indicates whether path P ∈ Pkl is selected for an OD-pair (k, l) ∈ OD.

The following coefficients need to be defined; the majority of them have already been introduced
and motivated in the above paragraphs:

dkl Number of passengers traveling in the future intermodal public transport net-
work on the OD-relation (k, l) ∈ OD (base demand).

dziI Additional induced demand passing through transfer point i ∈ Tz that can be
generated in zone z ∈ Z if MoD is offered with transfer points I ∈ T I

z .
cs Costs for operating public transport with predetermined frequency on the omis-

sion segment s ∈ S.
cfix
zI Infrastructure and other fixed costs for operating MoD within zone z ∈ Z and

for using the transfer points I ∈ T I
z .

cineff
zI Inefficiency costs for operating MoD within zone z ∈ Z with transfer points

I ∈ T I
z due to the fact that MoD operations become less efficient if there are

more or scattered transfer points.
cki Variable costs for feeding a passenger via MoD from k ∈ V into station i ∈ Tzk

(or vice versa).
ckl Variable costs for transporting a passenger via a direct MoD trip from k ∈ V

to l ∈ V. In this case, the costs per km are usually significantly higher as there
is decreased consolidation potential.

rziI Revenue per passenger generated by the additional demand dziI .
All input parameters are assumed to be non-negative.
For the sake of brevity, we define the cost parameter (per zone z ∈ Z and set I ∈ T I

z of its transfer
points)

czI = (cfix
zI + cineff

zI ) +
∑

i∈I
(cziI − rziI)dziI

covering infrastructure and other fixed costs, inefficiencies that result from the choice of the transfer
points I ∈ T I

z , and the financial impact of induced demand, which also considers potential additional
revenues. With this definition, the path-based formulation reads as follows:

min
∑

s∈S
csxs +

∑

z∈Z

∑

I∈TI
z

czIyzI +
∑

(k,l)∈OD


ckldklλkl

Pkl
dir

+
∑

P∈Pkl:P �=Pkl
dir

(ckiP + cljP )dklλkl
P


 (1a)
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s.t.
∑

I∈TI
z

yzI ≤ 1, ∀z ∈ Z (1b)

∑

P∈Pkl

λkl
P = 1, ∀(k, l) ∈ OD (1c)

∑

P∈Pkl
s

λkl
P ≤ xs, ∀s ∈ S, ∀(k, l) ∈ OD (1d)

∑

P∈Pkl:ip=i,

(k,i)∈E(V,W)MOD

λkl
P ≤

∑

I∈TI
zk

:i∈I

yzkI , ∀(k, l) ∈ OD, ∀i ∈ Tzk (1e)

∑

P∈Pkl:jp=j,

(j,l)∈E(V,W)MOD

λkl
P ≤

∑

I∈TI
zl
:j∈I

yzlI , ∀(k, l) ∈ OD, ∀j ∈ Tzl (1f)

λkl
Pkl

dir
≤

∑

I∈TI
z

yzI , ∀(k, l) ∈ OD, ∀z ∈ Z : z = zk or z = zl (1g)

xs ∈ {0, 1} ∀s ∈ S (1h)

yzI ∈ {0, 1} ∀z ∈ Z, ∀I ∈ T I
z (1i)

λkl
P ∈ {0, 1} ∀(k, l) ∈ OD, ∀P ∈ Pkl (1j)

The objective (1a) comprises the costs of operating the segments of the fixed-route network that
are under review and MoD variable and fixed costs based on the decisions on zones, transfer point
setup, and passenger paths. Constraints (1b) ensure the selection of at most one subset I ∈ T I

z .
Furthermore, constraints (1c) guarantee that a path through the network is chosen for each OD-pair.
The chosen paths need to be consistent with the choice of included segments, i.e., constraints (1d),
and with the MoD zones and transfer points, i.e., constraints (1e) and (1f). Constraints (1g) ensure
that direct MoD trips can only be realized if MoD is offered in both, the origin and destination
zone. Finally, the domains of the variables are stated in (1h)–(1j).

In case there are requirements on the topology of the resulting fixed-route network, e.g., that
it should possess no gaps, the model must be extended with additional constraints in the form of
xs1 − xs2 ≤ 0 to ensure the choice of an omission segment s1 enforces omission segment s2 to be
chosen as well.

3.4. Model application and extensions
In some applications, the primary focus could be on service level, in particular travel times,

rather than financial aspects. While travel times are only included as a constraint defining the
allowed paths, they can also be included in the objective function. Indeed, every path P ∈ Pkl

immediately yields the change in travel time compared to the status quo for the passengers of the
corresponding OD-pair (k, l), and the delta would then be the objective coefficient of λkl

P . Such an
approach could even be extended to also cover travel time changes for the induced demand, when
status quo travel times for the current transport modes of the new passengers are assumed.

A similar model could also be used as a component for planning a new public transport network
after having determined a rough network structure and a line pool with other planning tools. In
this situation, we see two key hurdles to overcome: First, we expect a significantly higher number of
potential line segments and less “fixed” edges, i.e., less edges not contained in any omission segment.
Depending on the instance size, this could create a computational challenge. Second, demand data
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as a crucial model input would have a higher degree of uncertainty. MoD costs are modeled to
be (in essence) proportional to the ridership, hence it is essential to perform a detailed sensitivity
analysis to validate the model recommendations.

Another relevant application is given by a public-private collaboration. Here, the actual MoD
operations would be provided by a private company, e.g., from the taxi or ride-sharing industry. This
approach could be motivated by significantly lower costs of the private companies, e.g., due to higher
driver utilization due to synergies with the core business. First examples of such collaborations can
already be observed in practice, mainly in the US (e.g., Jaffe, 2015). From a modeling perspective,
the main parameters that change are the MoD costs. As discussed in Section 3.2, our model is
flexible enough to reproduce different cost and remuneration structures and could for instance be
employed to study whether a certain level of subsidy makes sense from a financial perspective. In
this case, the model does not need to consider the actual costs of providing the service, but only
the share that is covered by the public authority. The underlying rationale would be to ensure a
setup that is still attractive for the private operator, while offering attractive price and service level
to the customers also in areas of lower demand, and still being cheaper for the public transport
provider than realizing the services himself.

4. Solution algorithms

We solve the real-world instances with two different solution approaches based on the model (1).
To reduce the model size, both approaches start with a preprocessing procedure described in Sec-
tion 4.1. The first approach is a branch-and-price algorithm that generates OD-paths dynamically
and is discussed in Section 4.2, the second one enumerates all relevant paths and then uses an
integer program (IP) solver (CPLEX) directly on model (1). We refer to the latter approach as
enhanced enumeration and present it in Section 4.3.

4.1. Preprocessing
The main drivers of the model size are the potentially exponentially-sized sets of path variables

λkl
P and of constraints (1c)–(1f). Hence, the preprocessing focuses on the reduction of these variables

and constraints.
First, one can exploit the fixed part of the public transport network, e.g., the central area of

the city where no or only a few edges are considered to be omitted. For all OD-pairs (k, l) ∈ OD
for which the current connecting path is fully contained in this fixed part of the network, the
model does not need to take a routing decision as passenger routes remain unchanged. The same
argument can be extended for OD-pairs (k, l) ∈ OD, for which at least one path P ∈ Pkl that
respects the constraint on total travel time lies entirely in the fixed network. All these OD-pairs
and associated constraints (1c) can therefore be removed from the model. Section 5 shows that a
significant reduction of the model results for the real-world instances of our computational study.

The second idea is to reduce the number of OD-pairs by requesting identical MoD routing
decisions for “close” OD-pairs with similar characteristics. This is in fact a heuristic approach to
reduce the model’s size, which makes sense from a consistency and ease-of-use perspective, as it
is intuitive to route passengers the same way, e.g., when they share the same origin and have a
close destination. Recall that we assume that we can assign passengers to MoD routes as long
as a constraint on the total travel time is fulfilled. In order to aggregate such “close” OD-pairs
(k1, l1) and (k2, l2) into a single OD-pair, we require the following: First, both origins k1, k2 (both
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destinations l1, l2) must lie in the same zone zk1 = zk2 (and zl1 = zl2). Second, the two OD-
pairs must have identical profiles in terms of path preferences. In case both origins k1, k2 (and
destinations l1, l2) share the same set of closest public transport nodes i0, i1, . . . (and j0, j1, . . .)
within walking distance we can compare their profiles in terms of travel times. For this purpose,
we take all possible combinations of transfer points for the three cases (a) one initial MoD leg,
(b) one final MoD leg, and (c) one initial and one final MoD leg, and consider the duration of the
resulting travel chains. If both OD-pairs show the same preference ranking when the combinations
are ordered by the travel times, we can treat them as one OD-cluster.

In the case of demand data being available only at the level of the i and j like in the example
we discuss in Section 5, this approach would not reduce of the number of OD-pairs. Hence, we
suggest an additional aggregation step: If k1 and i1 as well as k2 and i2 (and l1 and j1 as well as
l2 and j2) represent the same physical location, respectively, these pairs can be aggregated if they
show identical path preferences as discussed above and additionally the stops i1, i2 (and j1, j2) are
identically located with respect to the omission segments s ∈ S. Specifically, they should either
be both connected to the fixed part of the network or all neighboring edges should be part of
the same omission segment s ∈ S. To obtain the objective coefficient of λkl

P for the OD-cluster
of (k, l), we sum over the (ck

′iP + cl
′jP )dk

′l′ for all pairs (k′, l′) within the cluster of (k, l). For
our computational study in Section 5, we only aggregate OD-pairs with identical path preferences.
Depending on the specific application, one could even further aggregate pairs with path preferences
that are reasonably close.

4.2. Branch-and-price algorithm
The branch-and-price algorithm relies on the following principles (Desaulniers et al., 2005): The

restricted master problem (RMP) is given by the linear relaxation of model (1) defined over subsets
Pkl

RMP ⊂ Pkl of all possible OD-paths. The linear relaxation of (1) is then solved via column
generation. For each RMP solution, pricing subproblems, one for each OD-pair (k, l) ∈ OD,
identify negative reduced cost paths P ∈ Pkl to be added to Pkl

RMP. We assume that the direct
path P kl

dir is always in Pkl
RMP so that only non-direct paths need to be generated. As long as at

least one negative reduced cost path exists, the process is iterated. Integer solutions to (1) are then
produced by branching.

We start by discussing the subproblems and subsequently present our branching strategy.

4.2.1. Subproblem
Since the number of feasible paths can be huge, we generate them dynamically in a subproblem.

For each OD-pair (k, l) ∈ OD, we have to identify paths P ∈ Pkl with negative reduced costs
c̃P . We denote the dual prices of the constraints (1c), (1d), (1e), and (1f) by γkl, δkls , εkli , and ζklj ,
respectively. The pricing subproblem for (k, l) is then:

min
P∈Pkl

c̃P = min
P∈Pkl

(
ckiP + cljP

)
dkl − γkl −

∑

s∈S:P∈Pkl
s

δkls − εkliP − ζkljP . (2)

We solve the pricing problem of (k, l) ∈ OD as a shortest-path problem with resource constraints
(SPPRC, Irnich and Desaulniers, 2005), where we minimize reduced costs while respecting a con-
straint on the total travel time. We first describe the underlying SPPRC digraph. This digraph
is a network with four layers and it is specific for each OD-pair (k, l). In the associated SPPRC,
feasible paths start at a copy of the origin k in layer one and end at a copy of l in layer four.
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The vertices of the four layers can be described as follows: We use the notation v(n) for the
vertices, indicating a representation of node v ∈ V ∪ W in the n-th layer of the pricing network.
The first layer consists of a single vertex only, which is a copy k(1) of the origin vertex k ∈ V, to
be used as the network source. The second layer comprises copies i(2) of vertices i ∈ W where
a passenger could potentially access the fixed-route public transport network. Thus, this layer is
restricted to stop points i ∈ Tzk ⊂ W, i.e., where an MoD leg exists or station i is within walking
distance from k. Furthermore, at the third layer reside copies i(3) of all stops i ∈ W of the existing
network. Finally, the copy l(4) of the unique destination vertex l ∈ V is used at the fourth layer as
the network sink.

Table 2 displays the arcs of the pricing digraph for (k, l) ∈ OD. Each elementary k(1)-l(4)-
path P in this digraph corresponds with a trip from k to l. The computation of a path’s travel time
and reduced cost relies on the arc travel times and reduced costs shown in the last two columns
of Table 2. Both attributes of a path are however not necessarily given by accumulation of the
presented values. We discuss details on the computations as well as the labeling algorithm for the
actual solution of the (k, l)-specific subproblem in the following paragraphs.

Arc/between Description For Reduced Travel
Layers Cost Time

(k(1), i(2)) Access leg (k, i) ∈ E(W,V)walk −γkl tki

1 → 2 i ∈ Tzk and (k, i) ∈ E(W,V)MoD −γkl + ckidkl − εkli

(i(2), i(3)) First boarding (k, i) ∈ E(W,V) 0 tw

2 → 3 in fixed network

(i(2), l(4)) Egress leg for trips (i, l) ∈ E(W,V)walk 0 til

2 → 4 w/o fixed public transport legs i ∈ Tzl and (i, l) ∈ E(W,V)MoD clidkl − ζkli

(i(3), j(3)) Travel in (i, j) ∈ E(W) \
⋃

s∈S s 0 tij

3 → 3 fixed network (i, j) ∈ s for some s ∈ S −δkls

(j(3), l(4)) Egress leg (j, l) ∈ E(W,V)walk 0 tjl

3 → 4 j ∈ Tzl and (j, l) ∈ E(W,V)MoD cljdkl − ζklj

Table 2: Arcs of the pricing digraph for OD-pair (k, l) ∈ OD with their reduced costs and travel
times

Travel Time Computation. The travel time of a path can either be computed straightforwardly as
the sum of the path’s arcs travel times (as given in Table 2) or with more detailed network if one
wants to integrate expected transfer times (from MoD to public transport [or vice versa] or between
different buses in the public transport network).

For the straightforward approach, the travel time information comprises the following elements:
First, the time tki for the access leg (k, i) ∈ E(W,V), which is either given by the MoD travel time
including the initial waiting or by the walking time to the station. Second, the time tw for waiting
before initial boarding of a bus, which depends on the frequency of the bus service as well as on
the harmonization of the MoD operations with the bus timetable. Third, bus travel time tij on
the edge (i, j) ∈ E(W), which also includes the planned stopping time of the bus. Fourth, the time
tjl for the egress leg (j, l) ∈ E(W,V), which again either represents MoD travel time or walking
time. Note that the above parameters can also be weighted times in case the levels of inconvenience
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perceived by the passengers should be considered.
For a more detailed travel time model, passenger transfer times should be included. In this

case, the pricing network needs to contain copies of each stop vertex, one for modeling the access
of a certain bus line and one for passing through a stop with a bus of that line. Transfer times can
then be added to arcs ending at an access copy of a stop. An approximated value for the transfer
time can be estimated on the basis of the frequencies of the corresponding lines. Again, the usual
weighting approaches could be applied to reflect the fact that transferring time is perceived to be
more inconvenient than in-vehicle time. We have not implemented pricing with the more detailed
travel time network and we expect that the difficulty of this problem increases significantly as also
discussed in Borndörfer et al. (2007, p. 126).

Reduced cost computation. The reduced cost c̃P of a path P as defined in (2) contains δkls for an
omission segment s only once, independent of how many times (but at least once) arcs of that
segment are traversed. The consequence is that c̃P is in general not given by the sum of the arc
reduced costs (as one could interpret the reduced cost information in Table 2). There are two
options now to cope with this complication:

SPPRC-1: Introduction of additional resources, one for each omission segment s ∈ S
SPPRC-2: Modification of the constraints (1d)
In the first case, we introduce additional binary resources for each omission segment s ∈ S.

The resource for s indicates that the segment s has not been visited by the partial path (=1). The
resource is initialized with 1. Propagation sets them to 0 once an edge of the corresponding segment
is traversed for the first time. (Implications for cost propagation and dominance in labeling are
discussed below.)

In the second case, we replace constraints (1d) by the weaker version
∑

P∈Pkl

nP
s · λkl

P ≤ |s| · xs, ∀s ∈ S, ∀(k, l) ∈ OD, (1d’)

where nP
s is the number of edges in s that are used by P , and |s| is the total number of edges in s.

The consequence of this replacement is that now

c̃P =
(
ckiP + cljP

)
dkl − γkl −

∑

s∈S
nP
s δ

kl
s − εkliP − ζkljP (2’)

allowing to add up the reduced costs of all arcs to obtain the correct reduced cost of P .
While the first option provides a tighter linear programming (LP) relaxation of (1) compared

to the one where (1d) is replaced by (1d’), it however requires additional binary resources that slow
down the solution of the pricing problem. We analyze these effects in our computational study in
Section 5.

Labeling algorithm. The pricing problems, one for each (k, l) ∈ OD, are solved with an SPPRC
labeling algorithm. We use the following attributes:

T cost: the accumulated reduced cost;
T time: the accumulated travel time;

T om-seg,s: for each s ∈ S, a binary attribute indicating that omission segment s has not
been visited.
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While SPPRC-1 uses all attributes, SPPRC-2 uses only the first two. In both cases, the initial
label at the start vertex k(1) is (T cost, T time, (T om-seg,s)) = (0, 0, (1)).

For the label extension, we assume that for each arc (v, w) the reduced cost is c̃vw as given in
Table 2 and the travel time is tvw. In SPPRC-1, the resource extension functions for propagating
the attributes along an arc (v, w) are:

T cost
w = T cost

v +





0,
if (v, w) = (i(3), j(3)) ∈ s for some s ∈ S
and T om-seg,s

v = 0
c̃vw, otherwise

(3a)

T time
w = T time

v + tvw (3b)

T om-seg,s
w =

{
0, if (v, w) = (i(3), j(3)) ∈ s
T om-seg,s
v , otherwise

for all s ∈ S (3c)

The new label Tw is feasible if
T time
w ≤ Tmax (4)

where Tmax is the upper bound on the journey time. One other helpful observation is that only the
arcs (k(1), i(2)) for access legs (from the first layer to the second) can have a negative reduced cost,
since the dual prices fulfill δkls , εkli and ζklj ≤ 0. Therefore, labels with positive aggregated reduced
costs can be discarded, i.e., the condition T cost

w < 0 can be added to (4).
In comparison, the propagation within SPPRC-2 is purely additive, i.e., T cost

w = T cost
v + c̃vw and

T time
w = T time

v + tvw. The only feasibility condition is again (4).
Dominance is a key component of SPPRC labeling algorithms. For the weaker model formu-

lation, i.e., SPPRC-2, a label T1 dominates another label T2 (both must be resident at the same
vertex), if it is not greater in its reduced cost and accumulated travel time attributes. A dominated
label can be discarded if the dominating label is kept. For the tight formulation with additional
resources, i.e., SPPRC-1, the dominance condition is

T cost
1 −

∑

s∈S:T
om-seg,s
1 =1,

T
om-seg,s
2 =0

δkls ≤ T cost
2 and T time

1 ≤ T time
2 . (5)

The first condition allows label T1 to dominate label T2 even if it is inferior regarding the visits
of some omission segments s ∈ S. However, the reduced cost T cost

1 must then be even smaller
compared to T cost

2 (note that δkls ≤ 0 holds). Such an improved dominance relation was coined by
Jepsen et al. (2008) in the context of vehicle routing.

In addition, it proved beneficial to apply a partial pricing approach (see, e.g., Gamache et al.,
1999) that does not solve the pricing problem for each OD-pair (k, l) ∈ OD in every iteration, but
to only consider a pair (k, l) if a path from or to either zone zk or zl has been found in the previous
iteration. This does not change the algorithm in the initial iterations, as usually paths are found for
every zone, but it often significantly accelerates the final iterations. Clearly, all pricing problems
need to be solved again once partial pricing failed to identify any negative reduced cost column.

Finally, for the solution of the SPPRC subproblem, we also implemented a bidirectional labeling
algorithm (Righini and Salani, 2008). Compared to the discussed monodirectional labeling, pre-
tests did not reveal a significant improvement, neither for SPPRC-1 nor SPPRC-2. This may result
from the hard time bounds and the rather restricted options to route from k to l. Therefore, the
computational results section presents only results for monodirectional labeling.
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4.2.2. Branching strategy
We use the following two-level branching scheme that introduces branching decisions in decreas-

ing order of expected significance for the model. At the first level, the binary segment variables xs
are fixed, as these variables predetermine which paths through the network are possible and where
MoD is necessary. Priority is given to those segment variables xs with the largest flow passing
through s in today’s network.

At the second level, omission segments are fixed, and we branch on the binary MoD variables yzI .
The variable selection rule prioritizes MoD variables yzI with value closest to 0.5.

The RMP with fixed xs and yzI decomposes into independent network flow problems, one for
each OD-pair. Therefore, no branching on the λkl

P variables is required. Since we use the simplex
algorithm for solving the RMP, no fractional solutions occur, even when two paths have identical
costs.

The branching decisions impact the pricing subproblems in a straightforward way. All decisions
can be enforced by removing certain edges from the pricing network. On top of this, we can even
abstain from pricing for the OD-pairs that can use the shortest path in today’s network, where this
network is imposed by the fixed network and the omission segments fixed to one.

Finally, our branch-and-bound node selection strategy is the best-node-first strategy.

4.3. Enhanced enumeration algorithm
The number of feasible OD-paths Pkl very much depends on the instance structure. For example,

in a perfect star-shaped network, the number of connecting paths between k and l is given by
|Ek(W,V)| · |El(W,V)|, where Ek(W,V) ⊂ E(W,V) and El(W,V) ⊂ E(W,V) denote the set of
access and egress legs (k, i) and (j, l) for fixed k and l, respectively. This number is typically small.
Hence, we implemented an enumeration-based solution approach that solves model (1) directly with
an IP solver.

For each (k, l) ∈ OD, we explicitly construct all possible connecting paths with the help of
the pricing network developed in Section 4.2. The actual enumeration results from omitting any
dominance between labels.

As one may expect, this basic enumeration approach can lead to memory issues already for
small-sized instances and thus needs further enhancement. Indeed, the straightforward labeling
does not take into account that passengers choose shortest paths for the fixed-route segment of
their journey between potential MoD access and egress legs. This property can be translated into
the following dominance relation: One label can dominate a second one if it has a lower accumulated
travel time and fulfills two more conditions. First, both labels have visited the same transfer points.
Second, the first label must have visited a subset of the omission segments compared to the second
label. The latter condition is important in the context of branching on omission segments, because
we do not know in advance which segments are finally available. Indeed, with these dominance
conditions, any extension of the partial path corresponding to the first label is feasible whenever
the same extension is also feasible for the partial path of the second label.

5. Computational results

In this section, we present the computational study based on model (1) and the solution algo-
rithms of Sections 4.2 and 4.3. Section 5.1 gives details on the instances used for the calculations.
Subsequently, we systematically determine the most favorable parameter settings for the optimiza-
tion and provide a comparison of outputs for the branch-and-price and enhanced enumeration
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algorithms in Section 5.2. Furthermore, we assess the required granularity level for the decision
variables in Section 5.3 and interpret selected model outputs in Section 5.4. A sensitivity analysis
with respect to the key input factors is presented in Section 5.5.

5.1. Instances
The instances for the computational study are based on real-world data of a mid-sized German

city provided by the LinTim software (see, e.g., Goerigk et al., 2013), which includes vertices and
edges of the existing public transport network with around 20 bus lines and demand data per
OD-pair for an average hour. We consider mid-sized cities with bus networks to be a realistic
application for our model, because these networks often face financial pressures due to utilization
issues, in particular in low density areas and off-peak hours.

For our calculations, we have slightly adjusted the data by replacing (1) the few directed arcs
by undirected edges and (2) the group of very close central stops by a single vertex representing
the (historic) city center. The latter replacement helps to reduce the network and also makes sense
from a practical perspective, as passengers typically choose to walk to their final destination from
the most convenient stop of the bus route they are currently using instead of transferring again to
another bus line to ride a very short distance.

The given demand is almost symmetric. Therefore, we opted for unidirectional OD-pairs (k, l) ∈
OD by aggregating the demand for both directions (k, l) and (l, k) in the parameter dkl.

In the LinTim datasets, we also found a one-to-one correspondence between the physical loca-
tions of OD-vertices V and public transport stops W : Demand is not available on a more detailed
level than the current bus stops. Walking legs between the origin (destination) of the trip and
the first (last) public transport stop have still been considered in the travel times as displayed in
Table 2.

After these adjustments, the network comprises 238 vertices, 270 edges, 49,449 OD-pairs with
non-zero demand, and 405,767 passengers. On this basis, we have generated three sets of instances:

• A district of the city with 30 vertices, 33 edges, and 5,260 passengers to simulate a small city
with low demand levels, where it can even be questioned whether a fixed-route network is
required at all.

• The city center and selected lines to the outer districts with 145 vertices, 158 edges, and
164,950 passengers to simulate a network with a shape close to a star, where among others
the effects of improved linking of the ‘rays’ can be analyzed.

• The whole network to assess the holistic impact on a city level.
Our model further requires omission segments as well as potential MoD zones and transfer

points as additional input parameters. Since these elements do not exist in today’s network, we
have determined them manually by splitting the city into its main districts and selecting appropriate
key stops for the transfer points. Three different setups have been established per instance set for
the omission segments and two setups for the zones and transfer points, respectively. Altogether,
this gives twelve instances for each of the three instance sets. We have also included additional
constraints on the xs variables to ensure the resulting network is a connected graph.

As the network still resembles a star-shaped network with a limited number of reasonable paths
between most of the OD-pairs, we have generated another set of instances to observe how the model
and the different solution approaches behave in a different context. We have chosen a quadratic
grid, as it abstracts the street-network of a city and offers a multitude of reasonable connections
between the majority of OD-pairs. The grid dimension varies between 6 × 6 and 10 × 10, where
the edge of a grid cell has 1 kilometer (km) length. Potential MoD zones are represented by 3× 3
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sub-grids and the potential transfer points per zone are given by the central point of the zone itself
and its neighboring zones, respectively. Identical demand between every pair of vertices has been
assumed. Two setups for the omission segments have been chosen: The first one has two omission
segments per horizontal and vertical line, while the second one represents the extreme case where
every edge is a separate omission segment. This last case is certainly not a realistic setup. However
it is interesting from a performance perspective to see how the different approaches deal with a
setup that allows for a maximum number of possible resulting network structures.

Number of

omission distinct
Instance set # vertices segments MoD zones transfer points

District 12 30 4, 9, 13 4, 8 5, 9
Selected lines 12 145 24, 29, 36 22, 28 31, 41
Full network 12 238 27, 37, 48 24, 37 37, 53
Grid d× d , d = 6, . . . , 10 10 d2 4(d− 1), 2(d− 1)d �d/3�2 �d/3�2

Table 3: Omission segment and MoD setups per instance set

An overview of all instances and their characteristics is provided in Table 3. A visualization of
the full network for the setup with 27 omission segments, 24 MoD zones, and 37 transfer points is
shown in Figure 1.

Network vertex (MoD zones
represented by colors)
Transfer point vertex
Fixed edge
Edge on omission segment

Figure 1: Full network instance with MoD zones and omission segments

We make the following assumptions about the input data (a sensitivity analysis for the key
parameters is presented in Section 5.5): Base demand dkl is given in the LinTim data, for the
induced demand dziI we assume a start level of 15% of the base demand in the given zone and
adjust it based on the transfer point set I. Here, more transfer points are assumed to increase the
level of induced demand.

The costs for the fixed-route network are calculated based on costs of 5e per km that were
derived from the annual report of the corresponding public transport operator. MoD costs are
certainly the most uncertain input as they depend heavily on how this service is delivered, which
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service level is aspired etc. As a starting point, we assume 1e per passenger km and adjust this
value based on the demand level in the corresponding zone, hereby decreasing demand levels increase
the MoD costs. Costs of around 1e per passenger km are in the range of current taxi costs when 2
to 3 passengers are on board. An interesting benchmark for MoD costs in a driverless setup is given
by current pricing for car sharing, as the costs mainly reflect on providing and managing a fleet
of vehicles in both cases. Car sharing costs are in the range of 30-40 e cents per minute in larger
German cities, which should have a significant potential to decrease once pooling is introduced and
systems grow in scale. Fixed costs for MoD are small in the basic setup as we assume transfer
points will be chosen at stops that provide sufficient infrastructure, and also as vehicle costs can
be included in the variable costs. A conservative additional revenue of 50 e cent per additional
passenger are assumed considering that the MoD pricing mechanism is unknown.

In terms of travel times, we assume average travel speeds of 20 km/h for buses, 25 km/h for
MoD vehicles, dwell times of 20 seconds, and access, egress, and waiting times (both for buses and
MoD) of 5 minutes, respectively. The parameter θ indicating the maximum allowed increase in
total travel time has been set to 20 %.

The preprocessing reduces the number of OD-pairs to consider and thus the number of pricing
problems to be solved. We present an example of this reduction for the instance covering the full
network with 27 omission segments, 24 MoD zones, and 37 transfer points. Treating paths from
k to l jointly with paths from l to k reduces the number of pairs with non-zero demand from
49,449 to 25,359. When factoring out the stable part of the network, where passengers are always
routed through the fixed-route edges of the network, we have 15,760 OD-pairs and the number
of passengers reduces from 405,767 to 204,009. Subsequently, the aggregation step depicted in
Section 4.1 reduces the number of OD-pairs to be considered to 3,031, i.e., on average 5 OD-pairs
can be grouped together and their passenger routes determined collectively.

5.2. Technical aspects
All computational tests are performed on a standard PC with an Intel(R) Core(TM) i7-5930

running at 3.5 GHz with 64 GB of main memory using a single thread. Algorithms are coded in
C++ using CPLEX 12.7 and compiled in release mode with MS Visual Studio 2015. The time limit
for all runs is 1 hour (3600 seconds).

The RMP is initialized with two sets of columns. First, we insert the status-quo paths through
the fixed-route network. Second, we insert the MoD-only paths P kl

dir for all (k, l) ∈ OD.
Our key objective in this section is understanding the performance of the two branch-and-price

algorithms (with the weak and strong formulation) and enhanced enumeration approach. Tables 4
and 5 show computation times and technical characteristics. The columns have the following
meaning:

#Solved tree: Number of instances for which the complete branch-and-bound (B&B) tree
was solved;

#Solved root: number of instances for which the root node (linear relaxation) was solved;
Comp. time: overall computation time;
Subp. time: percentage of the overall computation time spent in the subproblem, i.e.,

pricing time in branch-and price and enumeration time for the enhanced
enumeration approach;

B&B nodes: number of branch-and-bound nodes solved within the time limit;
RMP iter.: number of (partial) pricing iterations;
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Columns gener.: number of generated columns;
Columns: number of columns per OD-pair;

Improv. to status quo: Percentage cost reduction compared to the status quo.
All numbers in Table 4 starting from column Comp. time are averages over the six instances

considered in the respective row. We omit the instances with 30 vertices, since nearly all instances
are already solved to optimality in the root node. Also, the very difficult instances with every edge
representing an omission segment are not displayed for the 8 × 8 and larger grids as not even the
root node was solved in these cases.

Nb. of # Solved Comp. Subp. B&B RMP Columns Improv. to
vertices Setup Algorithm tree root time time nodes iter. gener. per OD status quo

low nb. enh. enum. 6/6 6/6 30 27% 5.7 1 41571 15.2 9.5%
of transfer BaP+ strong 6/6 6/6 243 75% 5.7 206 13713 5.0 9.5%

145 points BaP+weak 4/6 6/6 2762 66% 526.2 1477 20332 7.4 9.5%

high nb. enh. enum. 4/6 6/6 1817 2% 67.7 1 181640 37.6 10.0%
of transfer BaP+ strong 1/6 3/6 3491 45% 28.7 763 49740 10.5 6.7%

points BaP+weak 0/6 6/6 3600 30% 58.8 931 46926 9.9 n.a.

low nb. enh. enum. 6/6 6/6 78 50% 2.3 1 101519 19.0 3.4%
of transfer BaP+ strong 6/6 6/6 1354 88% 2.3 176 23133 4.4 3.4%

238 points BaP+weak 0/6 6/6 3600 82% 72.7 694 28911 5.6 n.a.

high nb. enh. enum. 4/6 6/6 1302 24% 4.2 1 404122 43.4 3.4%
of transfer BaP+ strong 2/6 2/6 3320 59% 0.3 167 73563 8.2 3.4%

points BaP+weak 0/6 2/6 3600 42% 1.0 321 52317 5.7 n.a.

Table 4: Results for the real-world instances

As for the algorithmic performance, the enhanced enumeration performs consistently superior to
the branch-and-price approaches on the real-world networks. This is due to the network structure
being similar to a star and therefore allowing for a limited number of possible paths per OD-pair,
see columns per OD-pair in Table 4. While the enhanced enumeration approach could not solve the
problem to optimality in four cases as well, the root node is solved even for the hardest instances.

For the grid instances, a reverse behaviour can be observed in Table 5. The higher number
of possible paths causes significantly long calculation times. In several cases, the total number of
columns becomes too large for using the MIP solver directly. Conversely, the column-generation
algorithms are faster. For the low number of omission segments, we can compute average speedup
factors of 3.4, 7.1, and 4.1 for the 6 × 6, 7 × 7, and 8 × 8 instances, respectively. For the high
number of omission segments the 6 × 6 instance is even solved 60 times faster than by enhanced
enumeration. Finally, the 7 × 7 instance could be solved to optimality in 16.4 hours by column
generation, which would still be sufficient for a strategic setup, whereas the enumeration could not
tackle this instance any more and did not even finish the enumeration step of all possible paths.

Regarding the two alternative formulations, the tight model is by far superior to the weaker
model, mainly because branching trees are much smaller. The only exception is the extreme case
of the grid network, where each edge represents its own omission segment, as in this case the two
models are equivalent.

5.3. Granularity of decision variables
In this section, we analyze and quantify the impact of different decision variable setups on the

resulting network and objective value. This helps address the tradeoff between a more fine-grained
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# Solved Comp. Subp. B&B RMP Columns
Grid Setup Algorithm tree root time time nodes iter. gener. per OD

low nb. enh. enum. yes yes 5.4 58% 1.0 1 37530 59.6
of omission BaP+ strong yes yes 1.6 78% 1.0 19 5845 9.3

6× 6 segments BaP+weak yes yes 3.4 36% 1.0 33 9646 15.3

high number enh. enum. yes yes 420.8 96% 1.0 1 87418 138.8
of omission BaP+ strong yes yes 7.0 61% 1.0 53 9966 15.8
segments BaP+weak yes yes 4.0 34% 1.0 38 10547 16.7

low number enh. enum. yes yes 206 11% 3.0 1 118003 100.3
of omission BaP+ strong yes yes 29 36% 3.0 73 18913 16.1

7× 7 segments BaP+weak yes yes 1964 3% 71.0 723 50275 42.8

high number enh. enum. no no 3600 100% 0.0 1 0 0.0
of omission BaP+ strong no no 3600 2% 0.0 172 42495 36.1
segments BaP+weak no no 3600 0% 0.0 121 40772 34.7

low number enh. enum. yes yes 2224 7% 5.0 1 324276 160.9
8× 8 of omission BaP+ strong yes yes 547 14% 5.0 252 45718 22.7

segments BaP+weak no yes 3600 3% 35.0 517 75607 37.5

low number enh. enum. no no 3600 31% 0.0 1 1074224 331.6
9× 9 of omission BaP+ strong no no 3600 2% 0.0 100 76947 23.7

segments BaP+weak no yes 3600 3% 10.0 241 89476 27.6

low number enh. enum. no no 3600 100% 0.0 1 0 0.0
10× 10 of omission BaP+ strong no no 3600 2% 0.0 51 88601 17.9

segments BaP+weak no yes 3600 4% 3.0 165 102622 20.7

Table 5: Results for the grid instances
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modeling, which should lead to better objective values, solution effort, and practical considerations.
Table 6 shows the average improvement of the objective value once we have decision variables
that are more detailed with respect to segments, zones, and transfer points. The improvement
is calculated by a pairwise comparison of the less granular instances (with respect to the aspect
in focus) and their more granular counterparts. We finally take the average over all instances.
Furthermore, the impact on the computation time for the enhanced enumeration algorithm is
shown, e.g., smaller zones yield 0.8 % better results with 19 % longer computation times for the
instances with 30 vertices.

Instance set Change in objective and comp. time through

more segments more zones more transfer points

Nb. of vertices cost comp. time cost comp. time cost comp. time

30 −65.4% +217% −0.8% +19% −3.1% +860%
145 ±0.0% +194% −2.0% +99% −1.3% +7 679%
238 ±0.0% +201% −2.9% +18% ±0.0% +428%

Table 6: Impact of decision variable setup on objective value and calculation time

We observe that the transfer point setup has the highest impact on calculation times, while only
leading to smaller improvements in the objective value, in particular for the larger-scale instances.
Accordingly, we recommend to reduce the number of pre-selected transfer points if computation
times are too high. Moreover, a sequential approach could be applied, where first the model is
rerun with an increased number of possible transfer points for the zones for which MoD has been
offered. In a second step, these zones could be analyzed separately.

The prominent 65.4 % of improvement for the instances with 30 vertices is due to low demand
of these instances, so that the optimal solution comprises no fixed-route network at all. Therefore,
the first segment setup that still includes certain fixed-route segments is noticeably more expensive.
Thus, when modeling smaller networks with lower demand levels, e.g., when analyzing the local
transport network within a district, it is advisable to allow all edges to be removed. This solution
is purely based on MoD and could be the most beneficial one.

When concentrating on the larger-scale instances, the number of omission segments shows similar
behavior as the transfer points, albeit the impact on computation times is much smaller. Finally,
modeling smaller zones yields good results in terms of improvement and a reasonable increase in
the computation times. We can thus recommend to use very fine-grained zones as long as this is
still reasonable from an implementation perspective.

5.4. Interpretation of results
For the following series of experiments we choose the full network depicted in Figure 1 with the

same setup with respect to zones, omission segments, and transfer points. The base demand has
been reduced slightly by a factor of 0.7, because this setup provides a couple of interesting insights
on the variety of passenger routes. This setup is our base scenario also used for the sensitivity
analysis in Section 5.5.

The optimal solution for the base scenario is shown in Figure 2. Overall, 19 of the 27 omission
segments are still included in the solution, ten zones are chosen for MoD operations, and nine
distinct transfer points are selected, two of which serve two zones simultaneously.
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Figure 2: Solution of full network instance with reduced base demand
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Figure 3: Selected passenger flows for full network instance with reduced base demand

Figure 3 shows a magnification of the western part of the city, visualizing some passenger routes
of the optimal solution. As it is not possible to show all passenger routes at the same time, we
present four selected MoD legs for a zone (the yellow vertices in the figure) with two distinct
transfer points 2 and 4. It can be seen that passengers from the same origin or destination may use
different transfer points depending on the other end of their journey, e.g., some passengers starting
at vertex 3 use transfer point 2, others use transfer point 4. Also, vertex 6 uses MoD even though it
is still connected to the remaining network. These MoD legs are used for connections to the vertices
in the upper left of the graph, where the original connection edge (1, 5) in the public transport is
omitted. Furthermore, a direct MoD connection has become necessary to travel between vertex
1 and vertex 3. These vertices were originally connected via a (convenient) route with just four
stops. This cannot be adequately replaced by routes using the two MoD transfer points with the
allowed increase of travel time (here θ = 20%). Therefore, direct MoD is chosen by the model even
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though the costs are higher than the MoD costs for access and egress legs due to the decreased
consolidation potential.

5.5. Sensitivities
The final set of experiments investigates the sensitivity with respect to the main parameters,

i.e., changes in base demand (by scaling the standard demand by a factor), induced demand levels,
MoD costs, and the parameter θ.

The impact on objective value, i.e., costs, the number of selected segments, MoD zones, and the
total number of transfer points can be seen in Figures 4a–4d. Figure 4a shows the potential of MoD
to reduce system costs when demand decreases. In contrast, the main cost reduction possibility
for a classical fixed network is increasing headways and thereby making the system less attractive.
Additionally, it is worth noting that costs improve again slightly for higher base demand factors
due to the increased induced demand.

The sensitivity with respect to induced demand in Figure 4b shows alternating behavior regard-
ing segments, zones, and transfer points. The reason is that there exist multiple solutions of very
similar quality, because additional induced demand creates both additional costs and revenues.

In Figure 4c, we observe the expected strong impact of MoD costs on total costs. This result un-
derlines the necessity to obtain a good understanding of the planned MoD system before employing
a strategic model like the one we present.

Finally, increasing the parameter θ has the expected impact of reducing costs and allowing for
more MoD zones and transfer points as displayed in Figure 4d.

6. Conclusion and outlook

We have presented a strategic network planning optimization model for buses that allows for
intermodal trips with MoD as a first or last leg. The model captures important aspects such as
dynamic demand and passenger routing, and is the first model in the literature covering all these
aspects. Branch-and-price algorithms and an enhanced enumeration approach have been developed
able to solve realistic instances to optimality in reasonable computation times.

Considering this is an early step for the integrated planning of intermodal networks including
MoD, further research is necessary with respect to multiple modeling and algorithmic aspects. The
model objective can be extended to explicitly cover the impact on travel times and consider the
cost-service tradeoff. Furthermore, MoD-related aspects can be modeled with a higher level of
detail, e.g., a linking with more sophisticated demand models that determine the induced demand
on an OD-level. This could improve applicability in rural areas, where current long and inflexible
travel times deter the majority of people from using public transportation and where there is high
potential for induced demand as a consequence. Also, the costs for the MoD trips could be based
more explicitly on demand density instead of preprocessed demand levels as used in this paper. As
for the fixed-route network, frequencies could be included to better model the total system costs,
in particular in the case of binding capacity restrictions.

Obviously, including these aspects brings challenges for the solvability of the model: Path-
specific demand dklP would require a different realization of the pricing networks, where the MoD
cost contribution is independent of the path. In addition, a more detailed modeling of demand
density creates additional indices for the variable feeding costs cki reflecting the demand level of
the zone etc.
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Figure 4: Sensitivity analysis
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Regarding refined solution approaches, hybrid exact algorithms could be based on the combina-
tion of the presented branch-and-price and enumeration algorithms. One may first check whether
an enhanced enumeration is feasible and otherwise apply the branch-and-price approach. Alterna-
tively, one may treat some selected OD-pairs with many potential paths via pricing and others with
the enumeration approach. On the heuristic side, it could be beneficial to first prioritize, e.g., the
largest 20 to 30% of OD-pairs that typically represent some 60 to 80% of the total demand, and to
determine the network setup based on these. In a second step, the remaining OD-pairs could then
be added and further MoD connections supplemented in case the travel time constraint is violated.

We believe that the integration of MoD and public transport will stay a focal topic taken up
by public authorities, transport as well as technology companies, and users. From the research
perspective, our paper provides a solid foundation for further optimization-based decision support
in this field.
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