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Multiple Resource Interdependencies
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Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.
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Deggendorf Institute of Technology, D-94469 Deggendorf, Germany.

Abstract

This paper considers vehicle routing problems (VRPs) with multiple resource interdependencies and ad-
dresses the development and computational evaluation of an exact branch-and-price-and-cut algorithm for
their solution. An interdependency between two resources means that the two resource consumptions influ-
ence one another in such a way that a tradeoff exists between them. This impacts the feasibility and/or the
cost of a solution.

The subproblem in branch-and-price-and-cut procedures for VRPs is very often a variant of the shortest-
path problem with resource constraints (SPPRC). For the exact solution of many SPPRC variants, dynamic-
programming based labeling algorithms are predominant. The tradeoffs in problems with multiple resource
interdependencies, however, render the application of labeling algorithms unpromising. This is because
complex data structures for managing the tradeoff curves are necessary and only weak dominance criteria
are possible, so that the labeling algorithm becomes almost a pure enumeration. Therefore, we propose
to solve also the SPPRC subproblem with branch-and-price-and-cut. This results in a two-level, nested
branch-and-price-and-cut algorithm. We analyze different variants of the algorithm to enable the exchange
of columns and also rows between the different levels.

To demonstrate the computational viability of our approach, we perform computational experiments
on a prototypical VRP with time windows, minimal and maximal delivery quantities for each customer, a
customer-dependent profit paid for each demand unit delivered, and temporal synchronization constraints
between some pairs of customers. In this problem, tradeoffs exist between cost and load and between cost
and time.
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1. Introduction

In this paper, we study how vehicle routing problems (VRPs, Golden et al., 2008; Toth and Vigo, 2014;
Lahyani et al., 2015; Braekers et al., 2016) with multiple resource interdependencies can be solved exactly
by branch-and-price-and-cut. Resources are measurable quantities that are consumed when a vehicle moves
through a network, for example, cost, time, and load. By resource interdependency we mean that the con-
sumption of one resource influences the consumption of another one and vice versa, so that there exists a
tradeoff between the two. Such tradeoffs impact the feasibility and/or the cost of a solution. We use the
vehicle routing problem with time windows, soft demand, and synchronized visits (VRPTW-SD-SV) as a
prototypical example for a VRP with multiple resource interdependencies. The VRPTW-SD-SV is an ex-
tension of the well-known VRP with time windows (VRPTW, Desaulniers et al., 2014) and can be described
as follows. In addition to the hard time windows of the VRPTW, the VRPTW-SD-SV specifies minimal
and maximal delivery quantities for each customer and a customer-dependent profit that is paid for each
demand unit delivered. Furthermore, temporal synchronization between some pairs of customers is required
in the sense that a minimal offset between the beginning of service at such customer pairs is given. To our
knowledge, this particular VRP variant has not yet been studied in the literature.
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The VRPTW-SD-SV shares characteristics with routing problems with profits (Feillet et al., 2005; Jepsen
et al., 2014), though these consider a fixed profit for visiting a certain customer, independently of the amount
delivered. It also bears some similarity with split delivery VRPs (Archetti and Speranza, 2008; Irnich et al.,
2014), where also decisions must be taken on how much load to deliver to which customer by which vehicle.
Finally, the temporal synchronization aspect in the VRPTW-SD-SV is present in the context of routing and
scheduling service technicians (Dohn et al., 2009) or nurses in home care (Mankowska et al., 2014) as well
as in synchronized aircraft routing and scheduling (Ioachim et al., 1999).

In this paper, however, we are not interested in the VRPTW-SD-SV from an application perspective.
As mentioned, our main motivation for studying the problem is that it constitutes a basic example of a
VRP with more than two interdependent resources. In the VRPTW-SD-SV, there are three interdependent
resources, namely, cost, time, and load, with two tradeoffs. The first is cost versus load: the more is delivered
at a customer, the lower the cost of the route is, but the less can be delivered to other customers on this
route. Hence, without considering all customers on a route, it is impossible to specify the optimal amount
to deliver to a customer. The second tradeoff is cost versus time: on the one hand, it is good to start service
early at a customer in order to have more temporal flexibility for subsequent customers along the route. On
the other hand, it may be good or even necessary to start service at a customer later than at the earliest
possible point in time in order to be able to fulfill the temporal synchronization constraints with other
customers. Consequently, without knowing the visiting time for vertices in other routes, it is impossible to
determine an optimal or even a feasible visiting time for a given customer.

Such interdependencies have far-reaching consequences for heuristic as well as exact solution approaches.
Branch-and-price-and-cut is the predominant exact approach for time-constrained VRPs (see Desaulniers
et al., 2005; Lübbecke and Desrosiers, 2005; Feillet, 2010). The pricing problem in a branch-and-price-and-cut
algorithm for VRPs is very often a variant of the shortest-path problem with resource constraints (SPPRC). It
is usually solved by means of a dynamic-programming based labeling algorithm (cf. Irnich and Desaulniers,
2005). Such an algorithm creates partial paths by moving forward from an origin to a destination vertex in a
network. Herein, a label stores information on resource consumption of a partial path from the origin to the
endpoint vertex. Labels are propagated along the network arcs by resource extension functions (Desaulniers
et al., 1998; Irnich, 2008).

In many VRP variants, the propagation of a label along an arc creates a unique state that represents the
only undominated resource values for this partial path. This happens, for example, when the lowest cost is
obtained and the farthest feasible extensions are possible with the lowest possible resource values. The role of
dominance procedures is to eliminate any unnecessary labels. In case of a unique undominated state per label,
the dominance procedures can rely on a pointwise comparison of the resource values making dominance highly
effective. Indeed, the simplicity of resource updates and the existence of powerful dominance procedures are
the two main reasons for the successful application of labeling algorithms for solving SPPRCs.

However, the presence of resource interdependencies leads to tradeoffs between resources. These, in turn,
result in infinitely many undominated states per partial path, i.e., per label. In the VRPTW-SD-SV, a
single state describes the amount of load that is delivered, the point in time when the service starts, and
the associated cost (taking profits of delivered amounts into account). The difficulty is not only to design a
compact data structure that implicitly describes all associated feasible and undominated states of a label.
The more severe problem is that typically only very weak dominance relationships exist between these labels,
so that labeling becomes almost a pure enumeration.

Some cases of two interdependent resources can still be handled in a labeling algorithm, albeit at a
significant algorithmic and computational overhead. For vertex-specific linear tradeoffs, e.g., between cost
and time, the approach of Ioachim et al. (1998) stores tradeoff curves representing infinitely many states as
labels. Moreover, it applies a sophisticated dominance procedure that allows several labels to prove that a
certain label is dominated. Due to its complexity, only a few authors have adopted this approach. We are
aware of the following pertinent papers: Christiansen and Nygreen (1998) (for a ship routing and scheduling
problem with inventory constraints), Tagmouti et al. (2007) (for arc routing problems with time-dependent
service cost), Liberatore et al. (2011) (for a VRP with soft time windows), Spliet and Gabor (2014) (for a
VRP with time windows that have to be assigned before customer demand is known), Visser (2015) (for a
simultaneous vehicle and driver routing and scheduling problem with driving and break time restrictions),
and Tilk et al. (2017b) (for a pickup-and-delivery problem with discrete demands and autonomous and
non-autonomous vehicles). An implicit tradeoff between delivered load and reduced cost has been efficiently
encoded in the labeling algorithm for the split-delivery VRPTW by Desaulniers (2010) and Archetti et al.
(2011). Another tradeoff between load and time is considered for the exact solution of a variant of the truck-
and-trailer routing problem with time windows, in which the transfer of load from truck to trailer consumes a
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quantity-dependent amount of time (Rothenbächer et al., 2017). Finally, when partial recharging of battery
electric commercial vehicles is allowed in a VRPTW, there exists a tradeoff between time and the battery’s
energy level (Desaulniers et al., 2016).

When there are more than two interdependent resources, i.e., when there is more than one tradeoff,
matters become even more complicated, and we are unaware of any work on exact labeling algorithms for
this case when resources may take continuous values. One option for solving SPPRCs with tradeoffs is to
discretize the resources (Drexl, 2007; Dohn et al., 2011; Fink et al., 2016) and create networks in which
each vertex corresponds to a certain resource state at a customer. This is equivalent to creating several, but
finitely many new labels from a single label in the original network with one vertex per customer. The issue
with discretization is that, one the one hand, too fine discretization may lead to intractably large networks,
but on the other hand, too coarse discretization may provide insufficient solution quality. This dilemma can
be mitigated by not explicitly creating the whole discretized network. Instead, it is in some cases possible
to compute optimal paths using only a partial network (Fischer and Helmberg, 2014; Boland et al., 2017).
In any case, if an SPPRC shall be solved exactly and discretization is not an option, one possibility is to
formulate it as a mixed-integer program and solve it with LP-based methods. We take this approach in the
present paper.

Our contribution is the development and computational evaluation of a nested branch-and-price-and-cut
algorithm for the VRPTW-SD-SV, i.e., we solve both the original problem and the pricing problem in the
column-generation algorithm for the original problem by branch-and-price-and-cut. This is of considerable
relevance, as SPPRCs with multiple (more than two) resource interdependencies that cannot be solved with
traditional labeling routines occur as subproblems of several types of VRPs. Examples include VRPs with
quantity-dependent (un)loading times, with load-dependent travel times, with load transfer possibilities or
requirements between vehicles, or with autonomous and non-autonomous vehicles (e.g., trucks and trailers)
that must coordinate their movements in space and time. Generally speaking, VRPs where, in addition to
the customer covering constraints, further synchronization requirements between the vehicles are present,
which may concern spatial, temporal, load, or other aspects, possess multiple resource interdependencies (see
the survey by Drexl, 2012). As the VRPTW-SD-SV is an example of such a VRP, it constitutes a suitable
object of study for our purposes and allows us to gain fundamental insights that can possibly be generalized
to related VRP variants.

The remainder of the paper is structured as follows. In the next section, we review related work on nested
decomposition. After that, in Section 3, we present the extended set-partitioning formulation that forms the
basis of our solution approach. The latter is described in Section 4. Section 5 describes the computational
results, and Section 6 concludes the paper.

2. Earlier Work on Nested Decomposition

As described by Caprara et al. (2016), the nested application of column generation or Dantzig-Wolfe
decomposition for solving multi-stage linear programs dates back to the early 1970s. Nevertheless, the
literature on this topic is still rather scarce. This section briefly reviews pertinent recent papers.

Vanderbeck (2001) and Song (2009) apply nested column-generation approaches to two-dimensional
cutting-stock problems motivated by practical applications. In their respective first-level master programs,
both authors use formulations with one variable per cutting pattern. The resulting subproblems are es-
sentially two-stage multiple-knapsack problems with additional constraints. Vanderbeck (2001) solves the
first-level pricing problem heuristically by determining lower and upper bounds on the minimal reduced cost.
The second-level pricing problem is solved a priori by complete enumeration, which is possible due to some
special problem features stemming from the practical application context. A rounding heuristic is used to
obtain feasible solutions to the overall problem. Song (2009) applies a column-generation heuristic to solve
the first-level pricing problem. If the heuristic fails to identify a negative reduced cost column, a compact
formulation of the pricing problem is solved exactly. After computing the linear relaxation of the original
problem, branch-and-bound is applied using the columns found so far to obtain an integer solution.

Cordeau et al. (2001) describe a Benders decomposition approach for a simultaneous aircraft routing and
crew scheduling problem. They give a path variable formulation of the problem with one variable for each
sequence of flight legs of an aircraft and one for each crew pairing. In the Benders decomposition, both the
relaxed Benders master program and the primal subproblem (which involves only crew variables) are solved
by column generation.
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Elhedhli and Goffin (2005) study a two-echelon multi-commodity facility location (production plant and
distribution center) problem with single-sourcing constraints at the distribution centers. To solve the prob-
lem, they apply nested Lagrangean relaxation. First, they relax the commodity flow conservation constraints
at the distribution centers. This leads to two subproblems: a transportation-type problem and a capacitated
facility location problem with additional single sourcing constraints. The sum of the objectives of the two
subproblems yields a lower bound on the optimal solution value of the overall problem. The former sub-
problem is solved with a standard MIP solver. The latter, which is computationally much more difficult, is
again Lagrangean relaxed. The dual of the Lagrangean dual is then solved with column generation, using an
analytic center cutting-plane method for the relaxed master programs. To improve the quality of the lower
bound for the original problem, integer solutions are computed for the subproblems, which, for the second
subproblem, requires embedding the process just described into branch-and-bound.

Karabuk (2009) uses nested decomposition to solve dial-a-ride problems. The first-level master program
is a set-partitioning formulation where each variable corresponds to a complete vehicle route. The subprob-
lem for computing such routes, i.e., the second-level master program, is a network flow problem with side
constraints. It links vertices corresponding to single transport requests by arcs corresponding to partial
routes. At the beginning and at the end of each such partial route, the vehicle is empty. An arc from i to j
in the subproblem network represents a partial route starting at the pickup location of request i, visiting the
pickup and the delivery vertices of zero or more other requests and the delivery location of i, and ending at
the pickup location of request j. The second-level pricing problem is to generate arcs, i.e., partial routes for
the second-level master. This problem is solved by dynamic programming. Due to the special structure of the
network underlying the second-level master, it is possible to generate all relevant arcs of the network with
the second-level pricing problem, which is solved only once in each first-level iteration, before the first-level
pricing problem is solved, using the dual prices from the first-level master.

Akça (2010) develops several exact solution methods for the location routing problem, among them a
branch-and-price algorithm based on an extended formulation with one variable for each so-called pairing,
i.e., for each feasible sequence of routes starting and ending at the same depot. A possible approach for
solving the corresponding pricing problems, one per potential depot location, is to decompose them further
into the problem of generating routes and the problem of combining routes to pairings. To generate the
routes, the author solves a standard elementary SPPRC (ESPPRC) on a network with a source and a sink
vertex corresponding to the respective depot and one vertex for each customer. After solving this problem,
a set of undominated routes is available. From these, a source-sink network is generated with one vertex for
each undominated route. On this network, pairings are computed by again solving an ESPPRC. This means
that the second-level pricing problem, i.e., the generation of routes, is solved (i) only once in each first-
level iteration, (ii) using only dual prices from the first-level master program, and (iii) before the first-level
pricing problem, i.e., before the generation of pairings. The procedure can be interpreted as nested column
generation, because the solution of the pricing problem is implicitly based on an extensive formulation for
which only a subset of all columns/variables is determined, namely, the undominated routes.

Uygur (2011) presents a nested column-generation algorithm that is part of a heuristic for a service
technician scheduling problem with stochastic demand. Nested column generation is used to solve a relaxation
of the deterministic equivalent of a stochastic integer program for assigning working-week schedules of eight-
hour shifts to technicians, given a sample of equally likely request scenarios and various constraints such as
request time windows, technician qualifications, and work rules. In principle, the first-level master program
would be to assign a weekly schedule consisting of one or more shifts to each technician. However, such
a formulation would have too many constraints to be computationally tractable. Therefore, the problem
is relaxed and decomposed by shift, so that the actual first-level master program has binary variables
corresponding to assignments of technicians to shifts. The first-level pricing problems, of which there is one
per technician, determine shifts as combinations of requests in different scenarios. The second-level pricing
problems, one for each scenario, seek a suitable assignment of requests to shifts. The problems on all levels
are solved with a MIP solver. The author applies several acceleration and stabilization techniques to speed up
the column-generation process and reports that these are indispensable to achieve acceptable computation
times.

Hennig et al. (2012) study a crude oil tanker routing and scheduling problem. Specified amounts of
different types of crude oil must either be picked up at or delivered to ports by tanker ships within given hard
time windows. Split pickups and split deliveries are allowed. The amount of load picked up or delivered during
a visit of a ship at a port determines the duration of the visit. In addition, there are two types of capacity
constraints (weight and volume) for ships as well as for network arcs between ports. These constraints induce
interdependencies between the resources weight, volume, and cost. In combination with the load-dependent
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port service times, this makes the use of a one-stage decomposition prohibitively difficult. Hence, Hennig
et al. (2012) apply nested branch-and-price. The first-level master program determines a solution to the
original problem as a convex combination of variables that simultaneously correspond to sailing routes for
ships and to cargo patterns representing feasible quantities of load picked up at or delivered to the ports
along the route. The authors exploit that it is sufficient to consider only so-called extreme cargo patterns,
where at most one pickup and at most one delivery of each type of oil is served fractionally. The second-level
master generates extreme cargo pattern variables. It takes into account the ship and arc capacity constraints
as well as the load-dependent service times. The second-level pricing problem is then a standard elementary
shortest-path problem with time windows. It is solved by dynamic programming.

Dohn and Mason (2013) study a staff rostering problem where a roster-line, i.e., the sequence of shifts and
days off during the planning period, is composed of work-stretches. Work-stretches consist of an on-stretch
followed by an off-stretch. On-stretches, in turn, are made up of shifts (periods of time during which an
employee is at work), whereas off-stretches are periods during which an employee does not work. To solve
the problem, the authors use a nested subproblem with three levels, but no explicit nested delayed column
generation, i.e., no second-level master program. Also in this application, the hierarchy is reversed, i.e., the
subproblems are solved in reverse hierarchical order: first, shifts are combined to on-stretches, then, on- and
off-stretches are paired to work-stretches, and finally, roster-lines are constructed from work-stretches. Each
of these subproblems is an SPPRC and solved only once in each first-level iteration.

Muter et al. (2014) study the multi-depot vehicle routing problem with interdepot routes, a generalization
of the multi-depot VRP in which the vehicles are allowed to stop at any depot to replenish. They adapt the
approach of Akça (2010) to their problem as follows. A solution consists of a set of so-called rotations, one
per vehicle. A rotation is an ordered sequence of routes, each of which starts at a depot, visits an ordered
sequence of customers, and ends at a depot that may be different from the start depot. The start depot
of the first route in a rotation must be the same as the end depot of the last route. The duration of a
rotation is limited, but no customer time windows are considered. Muter et al. (2014) solve the subproblems
of generating rotations (one for each depot) using a multigraph whose vertices correspond to depots and
whose arcs correspond to routes starting and ending at the depots represented by the incident vertices. The
number of arcs in this multigraph is exponential in the number of customers; therefore, the subproblem is
solved by column generation. To obtain an integer solution to the subproblem, it would in principle have to
be solved by branch-and-price. In order to avoid this, the authors generate all undominated columns (i.e.,
multigraph arcs, routes) for each pair of depots, and compute a rotation on the thus limited multigraph,
analogously to the approach of Akça (2010). The undominated routes are generated by solving an ESPPRC
on the original graph, taking into account the dual prices from the RMP. On each multigraph created with
these routes, an SPPRC is solved to look for negative reduced cost rotations, which amounts to the solution
of the first-level pricing problem.

Caprara et al. (2016) apply nested branch-and-price with more than two levels to the temporal knapsack
problem (TKP). The TKP is a knapsack problem where a time horizon is considered and each item consumes
knapsack capacity only during an item-specific interval. The knapsack capacity must be maintained at any
point in time. To achieve this, it is sufficient to enforce the capacity constraint at all start times of the
item-specific intervals. The TKP has the property that selecting any subset of the constraints leads again
to a TKP. In their solution approach, the authors perform a Dantzig-Wolfe decomposition (one binary
variable for each lattice point of the convex hull of feasible solutions). To solve the linear relaxations at
the nodes of the branch-and-price tree, they recursively split the constraint set of the problem into two
equal-sized subsets. The results of computational experiments on benchmark instances showed that there
exists a marked, instance-size specific optimal number of recursion levels that leads to minimal computation
times. For the largest benchmark instance class, which has 1792 constraints, six levels turned out best. At
the final recursion level, the resulting TKPs are solved with a standard MIP solver.

All of the above papers are significant contributions to the principle of nested decomposition. It is,
however, debatable whether the approaches of Vanderbeck (2001), Cordeau et al. (2001), Karabuk (2009),
Akça (2010), Muter et al. (2014), and Dohn and Mason (2013) should be called nested delayed column
generation, as the second-level problems in these works are not solved with an iterative procedure that
alternates between master and subproblem. Essentially, only Hennig et al. (2012) and Caprara et al. (2016)
apply nested branch-and-price as described in the previous section, and, of these, only the latter authors
solve their problem to proven optimality.

In most of the references cited in this section, the motivation for the use of nested decomposition is to
exploit a quasi natural multi-layer problem structure stemming from the application context. For Hennig
et al. (2012) and us, the reason for using nested branch-and-price-and-cut is the necessity to solve a highly
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complicated subproblem for which an integrated, one-step solution approach is unpromising. Our subproblem
results from the extended set-partitioning formulation presented in the next section.

3. An Extended Set-Partitioning Formulation

Similar to the VRPTW, the VRPTW-SD-SV can be formally defined on a directed graph G = (V, A)
with vertex set V and arc set A. The vertex set V consists of the customer set N = {1, . . . , n} and vertices 0
and n + 1 that represent the depot at the beginning and the end of the planning horizon respectively. Each
customer i ∈ N is associated with a time window [ai, bi], a non-negative service time si, a demand interval
[qmin

i , qmax
i ], and a profit ei ≥ 0 per demand unit delivered. Moreover, a time window [a0, b0] = [an+1, bn+1]

is associated with the depots to model the planning horizon. For convenience, we also define s0 = sn+1 =
qmin

0 = qmax
0 = qmin

n+1 = qmax
n+1 = 0. Each delivery at customer i ∈ N must start within [ai, bi], but a vehicle

may arrive prior to ai and then wait until ai before starting the delivery. Any amount Qi between qmin
i and

qmax
i may be delivered, leading to a profit of eiQi.

A fleet of K identical vehicles with a capacity C is available to serve the customers. The vehicles are
initially located at the depot 0 and must return to the depot n + 1. We assume a fixed cost f for each vehicle
which is used for visiting customers.

Each arc (i, j) ∈ A represents a feasible movement from i to j, and it is associated with a non-negative
travel time tij and a non-negative routing cost cij . We assume that tij already includes the service time si.
Thus, an arc (i, j) ∈ A exists only for vertices i, j ∈ V , i �= j, with ai + tij ≤ bj and qmin

i + qmin
j ≤ C.

We use a subset P ⊂ N × N and values ∆ij for each (i, j) ∈ P to model the temporal synchronization
constraints. The value ∆ij means that the service at customer i ∈ N must start at least ∆ij time units
before the service at customer j ∈ N .

In addition to the standard VRPTW preprocessing (time window reducing and arc elimination, cf.
Desrosiers et al., 1995), we perform another type of time window reduction exploiting the temporal synchro-
nization. If (i, j) ∈ P and ai + ∆ij > aj , we set aj = ai + ∆ij . Similarly, if (i, j) ∈ P and bj − ∆ij < bi, we
set bi = bj − ∆ij .

A route r is defined as an elementary 0-(n + 1)-path in G together with a schedule and a distribution
plan. Such a path p = (i0, i1, . . . , im, im+1) satisfies i0 = 0, im+1 = n + 1, and ij ∈ N are all different for
1 ≤ j ≤ m. The associated schedule T = (T0, T1, . . . , Tm, Tm+1) specifies the start time Tj of service at each
vertex ij of p. The associated distribution plan Q = (Q0, Q1, . . . , Qm, Qm+1) specifies the load Qj delivered
to each vertex ij in p. A route r = (p, T, Q) is feasible if the schedule T complies with travel times and time
windows, i.e., if

Tj−1 + tij−1,ij
≤ Tj (for all 1 ≤ j ≤ m + 1) and Tj ∈ [aij

, bij
] (for all 0 ≤ j ≤ m + 1),

and if the distribution plan Q respects the demand intervals of the visited customers as well as the vehicle
capacity, i.e.,

Qj ∈ [qmin
ij

, qmax
ij

] (for all 0 ≤ j ≤ m + 1) and
m+1∑

j=0

Qj ≤ C.

Let R be the set of all feasible routes r = (p, T, Q).
The cost cr of a route r = (p, T, Q) ∈ R is defined as the sum of the fixed cost f for the vehicle and the

travel cost of the traversed arcs minus the profits per delivered load unit according to the distribution plan:

cr = f +
∑

(i,j)∈A(p)

cij −
m∑

j=1

eij
Qj

The goal of the VRPTW-SD-SV is to find a set of feasible routes visiting each customer exactly once and
respecting the synchronization constraints in P while minimizing the overall cost. A route-based formulation
of the VRPTW-SD-SV has non-negative route variables λr for each feasible route r ∈ R that indicate how
often route r ∈ R is performed, and binary arc variables xij indicating how often the arc (i, j) ∈ A is
traversed by all vehicles. Moreover, we denote by air the number of times route r visits customer i ∈ N , and
by bijr the number of times route r traverses arc (i, j) ∈ A. Finally, Tjr is the time at which customer j ∈ N
is served in route r. Now, the model reads as follows:

min
∑

r∈R

crλr Duals: (1a)
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s.t.
∑

r∈R

airλr = 1 i ∈ N [πi] (1b)

∑

r∈R

Tjrλr −
∑

r∈R

Tirλr ≥ ∆ij (i, j) ∈ P [σij ] (1c)

∑

r∈R

λr ≤ K [µ] (1d)

∑

r∈R

bijrλr − xij = 0 (i, j) ∈ A [ηij ] (1e)

λr ≥ 0 r ∈ R (1f)
xij ∈ {0, 1} (i, j) ∈ A (1g)

The objective (1a) minimizes the overall cost taking into account profits obtained by deliveries. Con-
straints (1b) state that each customer is visited exactly once, and constraints (1c) ensure the synchronization
in time for all (i, j) ∈ P . The fleet is limited by constraint (1d), and the path and arc variables are coupled
by constraints (1e). The variable domains are given in (1f) and (1g).

Note that there are no binary restrictions on the λr variables. The reason for this is that a solution
may be fractional in terms of the λr variables, because several routes may use the same path with different
schedules and/or different distribution plans. Note further that any convex combination of feasible sched-
ules/distribution plans for a fixed path forms a feasible schedule/distribution plan again. Such a convex
combination can impose binary arc variables, so that no branching is necessary in this case. Integrality
constraints in extensive formulations are discussed in detail by Desaulniers et al. (1998) and Jans (2010).

4. Nested Column Generation

In the following, formulation (1) is denoted as the first-level master program; its linear relaxation where
the set of all feasible routes is additionally replaced by a subset R̄ is called restricted master program (RMP).
For solving the linear relaxation of the first-level master program, a column-generation algorithm is employed
to an initially constructed RMP (Desaulniers et al., 2005). Given an RMP, let πi for i ∈ N denote the dual
prices of the constraints (1b), σij for (i, j) ∈ P the dual prices of the synchronization constraints (1c), µ
the dual price of the convexity constraint (1d), and ηij for (i, j) ∈ A the dual prices of the arc-coupling
constraints associated with the current solution. Its column-generation pricing problem, in the following
referred to as the first-level subproblem, asks for a feasible route r = (p, T, Q) with negative reduced cost c̄r

given by cr −µ−
∑

i∈N airπi −
∑

(i,j)∈A bijrηij +
∑

(i,j)∈P (σijTj −σijTi). The pricing problem is an ESPPRC
in which a tradeoff between cost and time as well as a tradeoff between load and time exists. As mentioned
in the introduction, a labeling algorithm for solving the subproblem of the VRPTW-SD-SV would have
to handle two interdependent tradeoffs, resulting in a weak dominance criterion and making the algorithm
almost a pure enumeration. Therefore, we also solve the first-level subproblem with branch-and-price. Its
column-generation subproblem is denoted as the second-level subproblem.

There exist (at least) two fundamentally different possibilities for modeling the first-level subproblem.
First, we present in Section 4.1 a compact and an extensive formulation in which the time variables are
defined on vertices (denoted vertex-time formulations). Moreover, we show how the latter formulation can
be used in a branch-and-price algorithm. Second, we present in Section 4.2 formulations in which the time
variables are defined on arcs (denoted arc-time formulations). Additionally, Section 4.3 discusses cutting
and branching strategies for the first-level master program as well as their implications for the first-level
subproblem. Finally, Section 4.4 describes cooperation schemes between the levels.

4.1. Vertex-Time Formulation of First-Level Subproblem
Defining visiting times on vertices leads to a compact vertex-time formulation of the first-level sub-

problem. The formulation utilizes binary arc-flow variables xij for all (i, j) ∈ A, load variables Qi for all
customers i ∈ N indicating the amount of load delivered to that customer, and time variables Ti for all
i ∈ V to indicate the start of service at that vertex. Setting πn+1 := µ − f , the routing cost of arc (i, j) ∈ A
is defined as c̄ij = cij − πj − ηij , and the compact vertex-time formulation reads as follows:

min
∑

(i,j)∈A

c̄ijxij +
∑

(i,j)∈P

(σijTj − σijTi) −
∑

i∈N

eiQi (2a)
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s.t.
∑

(0,j)∈δ+(0)

x0j =
∑

(i,n+1)∈δ−(n+1)

xin+1 = 1 (2b)

∑

(j,i)∈δ−(i)

xji −
∑

(i,j)∈δ+(i)

xij = 0 i ∈ N (2c)

∑

i∈N

Qi ≤ C (2d)

qmin
i

∑

(i,j)∈δ+(i)

xij ≤ Qi ≤ qmax
i

∑

(i,j)∈δ+(i)

xij i ∈ N (2e)

Ti + tij ≤ Tj + tmax(1 − xij) (i, j) ∈ A (2f)
ai ≤ Ti ≤ bi i ∈ {0, n + 1} (2g)

ai

∑

(i,j)∈δ+(i)

xij ≤ Ti ≤ bi

∑

(i,j)∈δ+(i)

xij i ∈ N (2h)

xij ∈ {0, 1} (i, j) ∈ A (2i)

The objective function (2a) minimizes the difference between the sum of arc and time cost (resulting from
the synchronization constraints of the first-level master) and the profits of the deliveries. Flow conversation
is guaranteed by constraints (2b) and (2c). Constraints (2d) and (2e) ensures that the overall load as well
as the load at each customer is bounded and coupled with the flow variables. Subtours are eliminated by
constraints (2f), and time-window feasibility results from constraints (2g) and (2h). The binary conditions
on the x-variables are given by (2i).

4.1.1. Path-Based Reformulation
As solving formulation (2) directly with a MIP solver is only possible (in reasonable time) for small-

sized instances with less than ten vertices (we performed pre-tests with this type of approach), we apply
Dantzig-Wolfe reformulation using path variables. (Recall that a route is a path with a time schedule and a
distribution plan.) Let Ω be the set of all elementary time-window and load feasible 0-(n + 1)-paths. More
precisely, time-window feasibility just ensures that at least one feasible schedule exists; the actual times are
determined in the path formulation by the time variables Ti for i ∈ V . The situation is analogous for load:
a path is load feasible if each customer i ∈ N can receive at least the minimum demand qmin

i . The actual
optimal amount to be delivered is then determined in the path formulation with the help of load variables
Qi for i ∈ N . Alternatively, the set of feasible paths Ω can be described as the projection of the route set R
onto its first path-related component, i.e., Ω = proj1(R) = {p : (p, T, Q) ∈ R}.

Besides the already mentioned time variables Ti and load variables Qi, the path formulation uses two
types of binary variables: θp, for each path p ∈ Ω, indicates whether or not path p is used in the solution, and
zi, for each vertex i ∈ V , specifies whether vertex i is visited in the chosen path. A path p ∈ Ω is characterized
by the following three coefficients: (1) the number aip of times vertex i is visited, (2) the number bijp of
times arc (i, j) is traversed, and (3) the routing cost c̄p = f − µ −

∑
i∈N airπi +

∑
(i,j)∈A bijp(cij − ηij). With

these definitions, the path-based formulation of the first-level subproblem reads as follows:

min
∑

p∈Ω

c̄pθp +
∑

(i,j)∈P

(σijTj − σijTi) −
∑

i∈N

eiQi Duals: (3a)

s.t.
∑

p∈Ω

θp = 1 [ν] (3b)

zi −
∑

p∈Ω

aipθp = 0 i ∈ N [ρi] (3c)

∑

i∈N

Qi ≤ C (3d)

qmin
i zi ≤ Qi ≤ qmax

i zi i ∈ N (3e)

Ti − Tj + tmax
∑

p∈Ω

bijpθp ≤ tmax − tij (i, j) ∈ A [φij ] (3f)

ai ≤ Ti ≤ bi i ∈ {0, n + 1} (3g)
aizi ≤ Ti ≤ bizi i ∈ N (3h)
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zi ∈ {0, 1} i ∈ N (3i)
θp ∈ {0, 1} p ∈ Ω (3j)

The objective function (3a) has the same meaning as (2a). Constraint (3b) ensures that exactly one path
is selected. The visiting variables are coupled with the path variables with the help of constraints (3c).
Constraints (3d)–(3h) are (identical) reformulations of the constrains (2d)–(2h). The variable domains are
given by (3i) and (3j).

4.1.2. Second-Level Branch-and-Price
Due to the huge number of variables in formulation (3), we also solve it with branch-and-price. In the

following, formulation (3) is referred to as the first-level subproblem (see beginning of Section 4) and as
the second-level master program (we use these terms interchangeably). The associated linear relaxation of
formulation (3) in which the set of all feasible paths is replaced by a subset Ω̄ is denoted as the second-level
RMP.

As for the first level, after solving the linear relaxation with column generation, branching may be
required to ensure integer solutions. To this end, we apply a two-stage hierarchical branching scheme: first,
we branch on the occurrence of individual vertices in the chosen path, i.e., on the binary zi-variables. Second,
we branch on individual arcs. Note that any route present in the current solution of the first-level RMP is a
feasible solution to the second-level master and it has an objective value (reduced cost) of zero. Hence, we
can initialize the second-level RMP with an initial upper bound of zero, so that branch-and-bound nodes
with a lower bound above zero can be cut off.

Column Generation in the Second Level. The resulting second-level subproblem is an ESPPRC with only
time- and load-related constraints. This ESPPRC can be solved with a standard bidirectional labeling
algorithm on the graph G = (V, A), similar to labeling algorithms used in the VRPTW pricing problem
(see, e.g., Righini and Salani, 2006). The reasons are that, on the one hand, time feasibility depends only
on travel times and time windows, i.e., the existence of any feasible schedule suffices. On the other hand,
concerning the vehicle capacity, a feasible route must allow the delivery of at least qmin

i units to each visited
customer i ∈ N . Hence, the qmin

i define the demands. Finally, there is no longer any type of tradeoff between
resources to be taken into account in the second-level subproblem.

With ν the dual price of constraint (3b), ρi for i ∈ N the dual prices of constraints (3c), and φij for
(i, j) ∈ A the dual prices of constraints (3f), the second-level subproblem asks for a feasible path p with
negative reduced cost ĉp given by c̄p −

∑
i∈N ρiaip −

∑
(i,j)∈A bijptmaxφij − ν. Hence, the (reduced) cost ĉij

of an arc (i, j) ∈ A can be defined as c̄ij − ρi − tmaxφij with ρn+1 = ν.
In the labeling algorithm for the second-level subproblem, we apply the following four acceleration

techniques. First, we use the ng-path relaxation (Baldacci et al., 2011) with a neighborhood size of ten.
Note that the z-variables as well as the T -variables in the second-level master (3) ensure elementarity of the
paths used in an integer solution. Second, a dynamic half-way point defined on the time resource is used
to balance the time spent in forward and backward labeling (Tilk et al., 2017a). Third, instead of a set of
visited customers, we define a set of unreachable customers to strengthen the dominance as proposed by
Feillet et al. (2004). Fourth, the labeling is tentatively solved by means of limited discrepancy search (LDS,
see Feillet et al., 2007) before using the exact labeling.

4.2. Arc-Time Formulation of First-Level Subproblem
Computational studies (see Section 5) have shown that formulations (2) and (3) can have a weak linear

relaxation. This can be attributed to the Big-M coefficient tmax in constraints (2f) and (3f). Ideas to
eliminate the Big-M were presented by van Eijl (1995) and later by Maffioli and Sciomachen (1997). They
define arc-time variables Tij indicating the service start time at vertex i when using arc (i, j) ∈ A. Note that
there is no variable defining the arrival time at the destination vertex n + 1, as no such variable is needed
for the VRPTW-SD-SV when time windows are preprocessed as proposed in Section 3. In general, for other
VRP variants, this issue can be resolved by defining an artificial destination vertex n + 2 and an extra arc
(n + 1, n + 2) with the additional arc-time variable Tn+1,n+2 that models the arrival time at n + 1.

Our arc-time formulation utilizes binary arc-flow variables xij for all (i, j) ∈ A and load variables Qi for
all customers i ∈ N indicating the amount of load delivered to that customer. Then, the compact arc-time
formulation reads as follows:

min
∑

(i,j)∈A

c̄ijxij +
∑

(i,j)∈P


 ∑

(j,k)∈δ+(j)

σijTjk −
∑

(i,k)∈δ+(i)

σijTik


 −

∑

i∈N

eiQi (4a)
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s.t. (2b), (2c), (2d), (2e), and (2i) (4b)
∑

(h,i)∈δ−(i)

(Thi + thixhi) ≤
∑

(i,j)∈δ+(i)

Tij i ∈ V \ {n + 1} (4c)

aixij ≤ Tij ≤ bixij (i, j) ∈ A (4d)

The objective function (4a) minimizes the reduced cost of the constructed route. In comparison to the
vertex-time formulation, the subtour-elimination constraints (4c) and time-window constraints (4d) are now
formulated with the help of the new arc-time variables.

4.2.1. Path-Based Reformulation
As for the vertex-time formulation (2), directly solving the compact arc-time formulation (4) with a MIP

solver is not a viable approach, even if the Big-M coefficient tmax is eliminated now. Instead, we use the
following Dantzig-Wolfe reformulation, again a path-based model, and solve it with branch-and-price. The
path variables θp have the same semantics as in (3) and the load and arc-time variables are adopted from
the compact model, so that the path formulation reads as follows:

min
∑

p∈Ω

c̄pθp +
∑

(i,j)∈P


 ∑

(j,k)∈δ+(j)

σijTjk −
∑

(i,k)∈δ+(i)

σijTik


 −

∑

i∈N

eiQi Duals: (5a)

s.t.
∑

p∈Ω

θp = 1 [ν] (5b)

zi −
∑

p∈Ω

aipθp = 0 i ∈ N [ρi] (5c)

∑

i∈N

Qi ≤ C (5d)

qmin
i zi ≤ Qi ≤ qmax

i zi i ∈ N (5e)

∑

(h,i)∈δ−(i)


Thi + thi

∑

p∈Ω

bhipθp


 −

∑

(i,j)∈δ+(i)

Tij ≤ 0 i ∈ V [χi] (5f)

ai

∑

p∈Ω

bijpθp − Tij ≤ 0 (i, j) ∈ A [ψL
ij ] (5g)

bi

∑

p∈Ω

bijpθp − Tij ≥ 0 (i, j) ∈ A [ψU
ij ] (5h)

zi ∈ {0, 1} i ∈ N (5i)
θp ∈ {0, 1} p ∈ Ω (5j)

Also here, the objective function (5a) minimizes the reduced cost of the constructed route. The con-
straints (5b) state that one path has to be selected. The other constraints are (identical) reformulations
of (4b)–(4d): the visiting variables are coupled with the path variables with the help of constraints (5c), a
feasible distribution plan is guaranteed by (5d)–(5e), and a feasible schedule is guaranteed by (5f)–(5h). The
variable domains are given by (5i) and (5j).

4.2.2. Second-Level Branch-and-Price
We sketch the branch-and-price algorithm for the resolution of formulation (5) and compare it with the

branch-and-price algorithm used to solve formulation (3).
First, the second-level subproblem is again an ESPPRC with only time windows and load constraints;

no tradeoffs between resources remain.
Second, the only difference to the subproblem of Section 4.1.2 is the definition of the reduced cost: let

ν be the dual price of constraint (5b), ρi for i ∈ N be the dual prices of constraints (5c), χi for i ∈ V
be the dual prices of constraints (5f), and ψL

ij and ψU
ij for (i, j) ∈ A be the dual prices of constraints (5g)

and (5h) respectively. Then, the subproblem asks for a path p ∈ Ω with negative reduced cost ĉp given by
c̄p −

∑
i∈N ρiaip −

∑
(i,j)∈A bijp(tijχij + aiψ

L
ij + biψ

U
ij) − ν. Hence, we define the reduced cost ĉij of an arc

(i, j) ∈ A as c̄ij − ρj − tijχij − (aiψ
L
ij + biψ

U
ij) with ρn+1 = ν.
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Third, for the solution of the second-level subproblem, we use the same bidirectional labeling algorithm
as in Section 4.1.2.

Finally, we also apply the same branching strategy as in the vertex-time reformulation.

4.3. Branching and Cutting in the First Level
In this subsection, we comment on the branching strategy and the use of valid inequalities for the solution

of the first-level master program (1) presented in Section 3.

Branching Strategy. We apply a two-stage hierarchical branching scheme to ensure integer solutions of (1).
We first branch on the number of vehicles and then on individual arcs. These arcs are selected with a
strong branching technique (cf. Achterberg, 2007). The idea of strong branching is to more carefully select
branching variables in order to reduce the size of the branch-and-bound tree, which is often helpful to reduce
computation times, in particular when bounds are weak so that trees are large. As candidates we choose
the eight most fractional arcs in the current solution and perform a rough evaluation of each candidate
by solving the RMPs of its two child nodes without generating further columns. A similar procedure was
successfully applied for the capacitated VRP by Pecin et al. (2017). The resulting RMP objective values
usually overestimate the true lower bounds. However, this evaluation is relatively fast and often beneficial
compared to straightforward arc-selection strategies. The arc to branch on is then chosen according to the
product rule (Achterberg, 2007, p. 62).

As branch-and-bound node-selection rule, we apply a best-bound-first strategy, because our primary goal
is to improve the dual bound.

Cutting Strategy. To strengthen the linear relaxation of the first-level master, we use two classes of valid
inequalities. The first class is 2-path cuts, which were introduced by Kohl et al. (1999). Let W ⊂ N be a subset
of customers that cannot be visited by one single vehicle due to capacity, time window or synchronization
restrictions, and let δ−(W ) be the set of all arcs (i, j) ∈ A with i ∈ W and j /∈ W . The corresponding 2-path
inequality is given by

∑
r∈R

∑
(i,j)∈δ−(W ) bijrλr ≥ 2. We use the heuristic proposed by Kohl et al. (1999) to

generate candidate sets W with up to 20 customers. Each candidate set is then tested if it has to be served
by at least two vehicles, and if so, the corresponding inequality is added.

The second class is subset-row inequalities (Jepsen et al., 2008) defined on sets U ⊂ N of cardinality
three. The corresponding inequality is given by

∑
r∈R� hr

2 �λr ≤ 1, where hr is the number of times route r
visits a customer in U . We separate violated subset-row inequalities by enumeration of sets U .

We add all violated 2-path cuts throughout the branch-and-bound process. In contrast, we separate
subset-row inequalities only at the root node and add at most ten of them in total.

Impact of Branching and Cutting Decisions. We only comment on the impact of branching and cutting
decisions on the path-based reformulations (3) and (5), as these are used to solve the first-level subproblems,
not the compact models (2) and (4).

Branching on the number of vehicles does obviously not alter the structure of the second-level master
(only the dual price µ on the fleet size is impacted). Branching on arcs can be realized in the second-level
subproblem by eliminating arcs from the underlying network.

Concerning the cutting decisions, the dual prices of 2-path cuts and subset-row inequalities need to be
incorporated in the cost of a second-level path c̄p. In both cases, this can also be handled in the second-level
subproblem. The dual prices of the 2-path cuts have to be subtracted from the arc cost c̄ij for all arcs (i, j)
contained in the cut set δ−(W ) for the respective cut-defining set W . For each subset-row inequality defined
by a set U ⊂ N with |U | = 3, we need an additional resource in the second-level subproblem to count
the number of times a vertex of U has been visited. Then, the dual price of the corresponding subset-row
inequality has to be subtracted from the cost of the path for every second visit. Dominance can be handled
as in the VRPTW subproblem (see Jepsen et al., 2008).

4.4. Cooperation Schemes
Partial pricing (Gamache et al., 1999) means to tentatively solve pricing problems with heuristic tech-

niques as long as they find one or several columns with a sufficiently negative reduced cost. The idea is to
quickly generate negative reduced cost columns and avoid the generally very time-consuming exact solution
of the pricing problem as often as possible.

Also for the second-level master, partial pricing is generally beneficial. It is not necessary to perform a
full branch-and-price in every iteration. In this section, we show how cooperation between the three levels
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First-level master
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Second-level subproblem

Shortcut 1:
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c̄ij(πi, µ, ηij),
σij

Route
r = (p, T, Q)

ĉij(c̄ij , ρi, χij , ψL
ij , ψU

ij , ν)
or
ĉij(c̄ij , ρi, φij , ν)

Path
p

Figure 1: Cooperation scheme of the nested column-generation algorithm

of the nested column-generation approach can be exploited. There exist ample opportunities to accelerate
the process. We discuss four of them.

First, note that the second-level master program does not need to be solved from scratch in each iteration
of the first-level branch-and-price. We can keep the paths computed in previous iterations and only update
their (reduced) cost according to the current dual prices given by the first-level master program. The updated
path variables from previous iterations are then used to warm-start the second-level RMP.

Second, any negative reduced cost column suffices to stop the solution of the subproblem. We can therefore
stop the second-level branch-and-price as soon as an integer solution in the second-level branch-and-bound
tree with negative reduced cost is found. We pass this route r = (p, T, Q) directly to the first-level master
program and re-optimize the latter.

Additional possibilities for partial pricing exist as visualized in Figure 1, where the three levels of the
nested column-generation algorithm are depicted. The third option is shown as Shortcut 1 in the figure.
For paths p that have been computed in previous iterations of the first-level master, there may exist a
schedule T and a distribution plan Q so that the resulting route r = (p, T, Q) has negative reduced cost
regarding the current dual prices of the first-level master. The problem to determine an optimal schedule T
and distribution plan Q will be discussed in Section 4.5.

The fourth option, shown as Shortcut 2 in Figure 1, passes one or several paths p that are computed in the
second-level subproblem directly to the first-level master. This is possible if a schedule T and a distribution
plan Q for p exist so that the resulting route r = (p, T, Q) has negative reduced cost c̄r regarding the current
dual prices of the first-level master (πi, µ, ηij , σij).

Transferring Bounds between Levels. Cooperation is not restricted to the generation of columns, also bounds
can be transferred. Every lower bound computed for the second-level master can be used to compute a
Lagrangean lower bound (LLB, cf. Lübbecke and Desrosiers, 2005) in the first-level master. Such a bound
can be used to sooner terminate a branch-and-bound node of the first-level master. More precisely, let
RMPLevel 1 be the objective value of the current iteration of the first-level master program and LBLevel 2 a
lower bound on the current second-level master program. Then the LLB is

LLB = RMPLevel 1 + K · LBLevel 2.

If a solution to the VRPTW-SD-SV with value UBLevel 1 is known and LLB ≥ UBLevel 1, the current
branch-and-bound node of the first-level master cannot lead to an improving solution and may therefore be
discarded. In particular for infeasible branches, e.g., when the first-level master has branched on the smaller
number of vehicles, we observed that a quickly computed root or Lagrangean lower bound in the second-level
master often leads to such an early termination.

ng-Path Relaxation. We now discuss the special case of using an ng-path relaxation in the second-level
subproblem. Recall that in the second-level master, only elementary paths can be feasible integer solutions.
Any non-elementary path is excluded due to constraints (3b), (3c), (3i) in the vertex-time formulation and
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constraints (5b), (5c), (5i) in the arc-time formulation respectively. In particular, only elementary paths are
passed to the first-level master on the regular way (solid arrow in Figure 1). However, using the shortcuts
gives us the possibility to pass non-elementary paths to the first-level master.

Passing non-elementary paths is attractive because it can further accelerate the overall process. On
the downside, the linear relaxation bound of the first-level master may deteriorate. There exists a clear
tradeoff. If one strives for a best possible linear-relaxation bound of the first-level master, one must pass
only elementary paths via the shortcuts. But if one allows non-elementary paths on the shortcuts, the
first-level master may compute a linear-relaxation bound value that is between the value of the elementary
and the ng-path relaxation. This computed bound can be better than the one of the ng-path relaxation,
because the first-level subproblem is not able to solve the ng-path relaxation exactly (formulations (3) and
(5) allow only elementary routes as exact solutions). Even worse, the value of the computed bound depends
on the course of the branch-and-price(-and-cut) algorithm and is, in this sense, not unique. Nevertheless,
the computed bound is certainly valid. This phenomenon was studied before by Desaulniers et al. (2016)
and is known as selective pricing.

4.5. Optimal Schedule and Distribution Plan of a Fixed Path
For each path p ∈ Ω, we can compute an optimal schedule T and an optimal distribution plan Q

(optimal with regard to the current reduced cost, disregarding any synchronization constraints). For a given
path p ∈ Ω, this is the problem

min
r=(p,T,Q)∈Ω

c̄r = min
r=(p,T,Q)∈Ω

∑

(i,j)∈A(p)

cij − µ −
∑

i∈N

airπi −
∑

(i,j)∈A

bijrηij +
∑

(i,j)∈P

(σijTj − σijTi) −
∑

i∈N

eiQi.

Note that, for a single path, the computation of the schedule and the distribution plan can be done inde-
pendently of one another.

To determine an optimal schedule, we use the forward label extension from the labeling algorithm for
the ESPP with linear vertex cost presented by Tilk et al. (2017b), using a linear vertex cost of c̃i =∑

j∈N :(j,i)∈P σji −
∑

j∈N :(i,j)∈P σij . The computational effort is quadratic in the path length in the worst
case. (Alternatively, the linear-time algorithm of Dumas et al. (1990) could be used, but the effect is minor
as paths are relatively short).

We compute an optimal distribution plan Q as follows. The customers visited on p are ordered by
decreasing profits, yielding a sequence (j1, . . . , jm). Then, for i = 1, . . . , m, the delivered amount is computed
iteratively as

Qji := min

{
max

{
C −

i−1∑

l=1

Qjl
−

m∑

l=i+1

qmin
jl

, qmin
ji

}
, qmax

ji

}
.

This procedure yields an extreme distribution plan in the sense that any path p contains at most one
customer i who receives a delivery above the minimum quantity (qmin

i ) and below the maximum (qmax
i ). As

mentioned at the end of Section 3, the route variables λr of the first-level master program are continuous, so
they can be convex combined to yield all feasible combinations of schedules and distribution plans for a path.
A similar idea was exploited in the labeling algorithm presented by Desaulniers (2010). Finally, note that in
a more general context beyond VRPTW-SD-SV, when resources still depend on one another in a complex
but linear way, the resource optimization problem for a fixed path can be solved as a linear program.

5. Computational Results

In this section, we report our computational results on the comparison of different nested branch-and-
price-and-cut algorithms for the VRPTW-SD-SV. All results were obtained using a standard PC with an
Intel(R) Core(TM) i7-6900k processor clocked at 3.2 GHz, 64 GB RAM, and Windows 10. The algorithms
were implemented in C++ and compiled into 64-bit single-thread code with MS Visual Studio 2013. The
callable library of CPLEX 12.6.2 was used for solving the RMPs in the first and second-level.

Because the VRPTW-SD-SV is studied in this paper for the first time, we created a new set of 120 bench-
mark instances. The set is divided into twelve instance classes with ten instances each that differ in the
number of customers and temporal synchronization constraints as well as in the vehicle capacities and time
window widths. More precisely, locations are placed in a 100 × 100 area, travel cost and travel time are
based on rounded Euclidean distances, and the planning horizon is set to 1000 time units. We distinguish
between small and large vehicle capacity (150 and 300) and time window width (25 to 125 and 50 to 250).
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All parameters were drawn at random. Synchronization constraints were chosen such that they are not
trivially fulfilled by the time windows of the involved vertices. The instance files can be downloaded from
http://logistik.bwl.uni-mainz.de/benchmarks.php.

In a first test, we compared our algorithm when either the vertex-time or the arc-time formulation is
used in the second-level branch-and-price with and without the use of shortcuts (SCs). In all cases, the
second-level RMPs were always warm-started with the columns generated in previous iterations. We used a
hard CPU time limit of 7200 seconds for this test. Table 1 summarizes the results. The table contains the
number of instances solved to optimality (#opt) as well as the minimum, average, and maximum solution
time in seconds (Time) for each instance class and both the vertex-time and the arc-time formulation, with
and without SCs. The table entries show that, whether or not SCs were used, the vertex-time formulation
clearly outperformed the arc-time formulation: over 60% more instances were solved to optimality, and the
computation time was significantly lower. In addition, the improvement when using SCs was enormous: both
the vertex-time and the arc-time formulation could solve around 60% more instances to optimality, and the
average computation time decreased by more than 60% and 25% respectively.

Table 1: Comparison of both second-level master formulations with and without shortcuts

Vertex-time formulation (3) Arc-time formulation (5)

Instance class Time [seconds] Time [seconds]

Setting n TWs, Cap |P | #opt min avg max #opt min avg max

Without 20 small 5 10 9.7 37.9 161.9 10 99.8 277.3 554.5
Shortcuts 20 small 10 10 6.1 46.3 263.1 10 32.7 431.6 1996.4

20 large 5 9 6.5 2074.4 7200.0 6 48.3 4220.3 7200.0
20 large 10 8 9.4 2526.6 7200.0 5 152.5 4594.1 7200.0
30 small 10 7 1286.8 3970.9 7200.0 0 7200.0 7200.0 7200.0
30 small 20 9 297.0 1994.8 7200.0 1 6349.6 7115.0 7200.0
30 large 10 2 2069.2 6446.6 7200.0 0 7200.0 7200.0 7200.0
30 large 20 4 189.6 5566.9 7200.0 1 3350.3 6815.0 7200.0
40 small 15 0 7200.0 7200.0 7200.0 0 7200.0 7200.0 7200.0
40 small 30 4 80.4 5719.2 7200.0 2 330.1 5897.1 7200.0
40 large 15 0 7200.0 7200.0 7200.0 0 7200.0 7200.0 7200.0
40 large 30 1 867.1 6566.7 7200.0 0 7200.0 7200.0 7200.0

Total 64 4112.5 35 5445.9

With 20 small 5 10 2.1 7.2 17.9 10 5.1 47.0 83.6
Shortcuts 20 small 10 10 1.1 8.5 35.8 10 3.8 77.5 395.9

20 large 5 10 0.6 62.0 362.3 10 1.4 979.3 4625.3
20 large 10 10 3.6 414.4 3730.9 9 26.2 1745.4 7200.0
30 small 10 10 15.2 316.4 1374.7 2 1038.8 6160.5 7200.0
30 small 20 10 9.4 128.4 397.3 5 196.5 5017.1 7200.0
30 large 10 6 52.2 3583.5 7200.0 1 2931.9 6773.2 7200.0
30 large 20 8 4.3 1654.8 7200.0 7 73.3 3096.7 7200.0
40 small 15 7 118.1 2911.2 7200.0 0 7200.0 7200.0 7200.0
40 small 30 8 2.0 1693.4 7200.0 3 31.8 5578.2 7200.0
40 large 15 5 30.0 4233.3 7200.0 1 5309.3 7010.9 7200.0
40 large 30 8 6.1 2833.9 7200.0 5 92.3 4015.1 7200.0

Total 102 1487.2 63 3975.1

As can also be seen from the Table 1, out of the twelve instance classes, those with large vehicle capacities
and wide time windows required the longest computation time. A larger number of customers also increases
the solution time significantly, whereas a larger number of synchronization constraints leads to a decrease in
the solution time. The latter can be attributed to the preprocessing, more synchronization constraints lead
to tighter time windows and tighter time windows significantly decrease the computation time needed.

To better understand why the vertex-time formulation is superior, we ran a second test, investigating only
the second-level branch-and-price. We ran our algorithm with SCs, and whenever the second-level master
program was solved to optimality, i.e., the SCs did not find a negative reduced cost route, we solved this
instance of the first-level pricing problem with both the vertex-time and the arc-time formulation. In this
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way, both versions were solved with identical reduced cost, and the comparison was not impacted by an
otherwise different trajectory of the dual prices. Moreover, pricing problems tend to become more difficult
towards the end of the column-generation process; hence, the instances we used should be more of a stress
test for the formulations. We used a hard CPU time limit of 7200 seconds for this test.

Table 2 reports results for the solution of the linear relaxation of the second-level master program. In
the table, instances are grouped according to the number of customers. For each instance group, the table
contains the minimum (min), geometric mean (gm), and maximum (max) of the ratio of the computation
times (Time ratio), and the ratio of the linear relaxation bounds (Bound ratio). (The arithmetic mean makes
no sense for expressing the average of factors, i.e., of non-normalized ratios of two values.) In addition, the
column #inst displays the number of instances that were considered in the respective comparisons. For the
computation of the time, we took into account only those 105 instances of the second-level master program
for which the solution of the linear relaxation took more than 0.1 seconds in both formulations. In this way,
the impact of inaccuracies in time measurement was reduced. For the linear relaxation ratio computation,
we used all instances that were solved in the time limit with both formulations.

The table shows that the arc-time formulation is slightly stronger on average: there is an average gap
of 2% between the values of the linear relaxations of the arc-time and the vertex-time formulation. (Note
that the bound ratios in the table are positive, as the optimal values of the linear relaxations are always
non-positive.) On the other hand, solving the linear relaxation of the vertex-time formulation is significantly
faster: The table shows an average speed-up factor of 13 and the maximum factor is actually more than
185. Note that in very rare cases the linear relaxation of the arc-time formulation was solved faster (three
instances in total), but the detailed results showed that computation times were less than 0.3 seconds for
these instances. Moreover, the values of the linear relaxations were identical in both formulations for 373
out of 413 instances. This can again be attributed to the preprocessing; tighter time windows lead to less
flexibility in the schedule of a route and this, in turn, often leads to the same linear relaxation values in both
formulations. Indeed, when we ran this test without preprocessing, the linear relaxation bounds differed for
40% of the instances.

Table 2: Comparison of the solution of the linear relaxation of the second-level master

Time ratio Bound ratio
(tarc

LP /tvertex
LP ) (LBarc/LBvertex)

n #inst min gm max #inst min gm max

20 11 4.29 15.37 86.85 217 0.71 0.99 1.00
30 57 0.50 20.01 185.75 135 0.41 0.98 1.00
40 37 0.70 6.72 47.53 61 0.50 0.95 1.00

Total 105 13.25 413 0.98

Table 3 reports the results of solving the second-level master to integer optimality with both formulations.
For each instance class, the table contains the number of considered instances, the minimum, average, and
maximum computation time in seconds as well as the minimum, average, and maximum number of branch-
and-bound nodes needed. All in all, the results confirm the superiority of the vertex-time formulation,
which on average required less than a ninth of the computation time compared to the arc-time formulation,
although nearly 20% more branch-and-bound nodes were explored on average.

Table 3: Comparison of the integer solution of the second-level master
Vertex-time formulation (3) Arc-time formulation (5)

Time [seconds] #B&B nodes Time [seconds] #B&B nodes

n #inst min avg max min avg max min avg max min avg max

20 217 0.1 6.5 205.4 1 93 531 0.1 140.1 4200.1 1 86 483
30 135 0.1 18.4 446.7 1 110 609 0.1 912.2 4337.3 1 104 249
40 61 0.1 285.6 4817.9 1 149 1101 0.1 622.0 5833.1 1 73 237

Total 413 51.6 107 463.7 90
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6. Conclusions

In this paper, we have considered vehicle routing problems with multiple resource interdependencies and
have discussed the difficulties arising in branch-and-price algorithms when tradeoffs between the consumption
of different resources exist. To overcome the issues caused by resource interdependencies, we have proposed
a nested, two-level decomposition approach where both the original problem and the pricing problem for the
original problem are solved by branch-and-price-and-cut. To demonstrate the approach on a prototypical
example, we have examined the VRPTW-SD-SV, which extends the well-known VRPTW by specifying
minimal and maximal delivery quantities for each customer and a customer-dependent profit that is paid
for each demand unit delivered. The problem also requires temporal synchronization between some pairs of
customers by indicating minimal offsets between the respective service start times.

We have experimented with two formulations for the second-level master program. These differ in the
way the temporal aspect of the problem is handled: the first has time variables defined on the vertices of
the underlying network, the second uses time variables defined on the arcs. In addition, we have considered
the use of cooperation schemes to speed up the solution process by avoiding to solve the second-level master
to optimality in each first-level iteration. Instead, we pass paths computed in the first- or second-level
subproblem directly to the first-level master if there exist a compatible schedule and distribution plan such
that the resulting route has negative reduced cost. To this end, we apply efficient procedures that allow us
to quickly compute an optimal schedule and distribution plan for a given path with the current dual prices
from the first-level master.

Our computational experiments, which are performed on a new set of benchmark instances, have shown
that the approach using time variables on vertices is clearly superior: average computation times are much
lower, and far more instances are solved to optimality within a given time limit. This is true even though
the linear relaxation of the arc-time formulation is stronger and therefore has smaller branch-and-bound
trees in the second-level master. However, this advantage is overcompensated by the shorter computation
times needed to solve each branch-and-bound node of the vertex-time formulation. Experiments with the
cooperation schemes show that these provide significant speedups for both formulations, almost doubling
the number of instances solved to optimality.

In future work, we intend to adapt the presented decomposition approach to VRPs with more complicated
resource interdependencies. We also plan to compare the approach with alternative methods, in particular,
complete or partial discretization of resource consumptions. Discretization would allow the use of one-level
branch-and-price with classical labeling algorithms for the solution of the subproblem, but requires ways to
curtail the growth of the resulting subproblem networks.

Given the difficulty of their exact (as well as heuristic) solution on the one hand and their practical
relevance on the other, VRPs with multiple resource interdependencies are well worthy of further study.
Research in the field is growing, and we conjecture that the topic will remain on the research agenda of the
vehicle routing community for some time.
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