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Abstract

Vehicle routing problems with multiple synchronization constraints (VRPMSs) are problems
that exhibit, in addition to the usual task covering constraints present in any VRP, further
synchronization requirements between the vehicles, concerning spatial, temporal, and load
aspects. They have only recently caught the attention of scientists and are currently a very
active field of research. This paper describes a generic heuristic that allows to solve many
important types of VRPMSs.

Keywords: Heuristic; Vehicle Routing; Synchronization; Coordination; Trailer; Transship-
ment

Introduction

VRPs with multiple synchronization constraints (VRPMSs) are problems that exhibit, in ad-
dition to the usual task covering constraints present in any VRP, further synchronization re-
quirements between the vehicles, concerning spatial, temporal, load, or other aspects. Despite
the considerable practical relevance of VRPMSs, the scientific community has only recently be-
gun to study them more intensively, which may be due to their inherent difficulty. Currently,
VRPMSs are a very active field of research, and numerous publications have appeared in the
last few years. Ref. [16] gives a survey.

Ref. [15] introduces the VRP with trailers and transshipments (VRPTT). This problem may
be regarded as the archetypal VRPMS. Ref. [17] describes how numerous types of VRPs and
VRPMSs can be modelled as VRPTTs. The contribution of the present paper is to present a
heuristic for the VRPTT with which also many other VRPMSs can be solved.

The paper is structured as follows. In the next section, the VRPTT is described. Then, a
classification of synchronization is given, the most important types of VRPMSs are listed, and
the central difficulties in solving VRPMSs are illustrated. Afterwards, a heuristic for the VRPTT
is presented, and it is explained many how other VRPMSs can be solved with this heuristic.
The paper concludes with a summary and an outlook.

The VRP with trailers and transshipments

The VRPTT extends the classical (single- as well as multi-depot) VRP with time windows in
two respects: It considers a heterogeneous fleet, distinguishing between autonomous and non-
autonomous vehicles (lorries and trailers), and, in addition to depot and customer locations,



it introduces another type of locations, so-called transshipment locations. Autonomous vehicles
can move on their own in space and time; non-autonomous vehicles can only move in time on
their own (i.e., wait at a location), but must be accompanied (pulled) by an autonomous vehicle
to move in space. At transshipment locations, trailers can be decoupled and parked, and, as the
name implies, load transfers between vehicles can be performed.

Most importantly, there is no fixed one-to-one assignment of a lorry to a trailer. In general, any
lorry can pull any trailer on any part of its itinerary, and a load transfer is possible between any
pair of vehicles in any direction. Application- or instance-dependent compatibility restrictions
between some vehicles may of course apply. Also, there usually are accessibility constraints
specifying which vehicles can visit which customers and which transshipment locations.

A classification of synchronization

In ref. [16], the five types of synchronization described in Table 1 are identified.

Type Description Example in VRPTT
Task Decision on which vehicle(s) fulfil(s) which | Which (type of) lorry and which (type of)
synchronization | task(s) trailer (if any) visit which customer(s)?
Operation Decision if, when, and where which| Which vehicle transfers load when, where,
synchronization | vehicle(s) perform(s) which operation that | into which other vehicle?
may be necessary or desirable to fulfil a
task
Movement Decision on which vehicles join to form | Which lorry pulls which trailer along
synchronization | an autonomous composite vehicle able to | which road segment(s)?
move in space
Load Decision on how load is partitioned | How much is loaded into the lorry and
synchronization | between vehicles upon pickup at a cus-|how much is loaded into the trailer if a
tomer and during transshipment opera- |lorry-trailer combination visits a customer
tions to collect the latter’s supply? How much
load should a given vehicle transfer into
another given vehicle at a transshipment
location?
Resource Decision on the use of common scarce re- | Which vehicle is allowed to transfer load
synchronization | sources by vehicles into a certain trailer in a particular time
interval (assuming that the trailer can
only receive load from one vehicle at a
time)?

Table 1: Types of Synchronization

Operation synchronization (0.s.) can be further subdivided with respect to the time aspect:

e Pure spatial operation synchronization. This is the case when the temporal aspect is ignored
and only the spatial aspect matters. There are quite a few papers considering only pure spatial
0. s., cf. Section 5.3 in ref. [16], but in the present paper, the time aspect of synchronization
is always taken into account.

e Operation synchronization with precedences. This is the case when two vehicles must start
their part of a to-be-synchronized operation with a variable temporal offset A with a < A <b,
0<a<hb.

e Exact operation synchronization. This means that two vehicles must either start their respect-
ive part at the same time, i.e., with offset A = 0 (simultaneous o. s.), or with a fixed offset
A = a with a > 0 (deferred o. s.).

Two remarks concerning terminology: In this paper, the term task is used to denote a mandatory
duty in a problem, something that must be done and requires zero or more units of some limited



resource. Examples are collecting supply or delivering demand at one location in a VRP, picking
up load at one location and delivering this load to another location in a pickup-and-delivery
problem, visiting a location to render a service in a service technician dispatching application
etc. In some papers, the term resource denotes equipment such as vehicles and containers, or
persons such as service staff and drivers, which is/are used to fulfil tasks. In this paper, the term
resource is used to denote an arbitrarily scaled one-dimensional quantity that can be determined

or computed. Examples are cost, time, load, or the information ‘Is lorry k currently pulling trailer
K7,

Important types of VRPMSs

Ref. [17] identifies several special cases of VRPMSs, which are described in Table 2. These
VRPMS types may be considered particularly important because of their practical relevance
and the number of scientific publications dealing with them. Publications up to the year 2012

are listed in the above-mentioned survey [16]; selected newer papers are listed in the table.

Problem type

Description and applications

References

S.

VRPs with split | More than one vehicle may visit a customer and col- | Nishi and Izuno [38], Ar-
pickup  or  split|lect or deliver only part of the supply or demand;|chetti et al. [3]

delivery, SDVRP applications in ship routing; requires load s.

PDPTWs with | Pickup-and-delivery with time windows and optional | Qu and Bard [42], Masson
transshipments, load transfers; applications in less-than-truckload | et al. [32]

PDPTWT and passenger transport; requires operation and load

Multi- or N-echelon
VRPs/LRPs,
NEVRP/LRP

Multi-layer vehicle or location-routing problem with
transshipment locations; hierarchy of transport levels
with fixed assignment of vehicles to levels and man-
datory transshipments between vehicles of different
levels; applications in city logistics; requires opera-
tion s.

Hemmelmayr et al. [23],
Nguyen et al. [37]

Simultaneous vehicle
and crew routing and
scheduling problems,
SVCRSP

Planning of routes and rotations for vehicles and
drivers without given fixed schedule and
without given lines to be serviced; vehicles and
drivers are separate, non-autonomous objects that
must join pairwise to move in space; applications in
long-distance road transport; requires movement s.

Drexl et al. [19]; Meisel
and Kopfer [33] is on
movement  synchroniza-
tion of autonomous and
non-autonomous means of
transport

Personnel dispatch-
ing problems with
spatio-temporal

Staff planning problems where tasks must be fulfilled
simultaneously or with a known offset by several per-
sons with possibly different qualifications; applica-

Rasmussen et al.
Mankowska et al. [29]

[43],

as special cases, cf. [17]; specific applications in raw
milk collection, fuel oil delivery, supermarket replen-
ishment, among others; requires operation, move-
ment, load, and resource s.

synchronization, tions in service technician dispatching and home care
PDPSTS staff routing; requires operation s.
VRPTT Description see above; contains the preceding types | No heuristic published so

far for the complete prob-
lem

Table 2: Important types of VRPMSs

The three central difficulties in solving VRPMSs with heuristics

There are three main causes why it is difficult to solve VRPMSs heuristically:
e The so-called interdependence problem.
e The existence of different ways of performing a task.




e Optional synchronization possibilities as opposed to mandatory synchronization requirements.
The interdependence problem has implications for exact solution approaches based on mathem-
atical programming, too. Details on this are beyond the scope of the present paper; the reader
is referred to ref. [16]. Different ways of performing a task can be modelled rather easily within
mixed-integer programs, although they make the solution more difficult, as the solution space
is enlarged. The same holds for optional synchronization possibilities.

The interdependence problem

The interdependence problem is that, because of the additional synchronization requirements,
be it with regard to spatial, temporal, load, or other aspects, the vehicle routes become inter-
dependent, and changes in one route may make one or several or all other routes infeasible. For
example: If a change in the route of a lorry k& means that it no longer moves from A to B, a
trailer that k should have pulled from A to B can no longer perform its route. If a change in
the route of a vehicle kK means that k reaches a transshipment location later, the other vehicle
involved in the transshipment must wait and may thus miss the time windows of customers that
it should visit after the transshipment. If two vehicles k1 and ko are to collect the supply of
a customer ¢, and if kq’s route is changed so that k1 no longer visits the customer, ko’s route
may become infeasible because of insufficient capacity to collect the complete supply of i. If a
lorry ki transfers load into a trailer at a transshipment location, the route of a second lorry
ko supposed to transfer load into the trailer afterwards will become infeasible if k; transfers
more than initially planned and thereby reduces the amount ke can transfer, leaving ko with
insufficient capacity to perform the rest of its route. Such effects can of course propagate further
and thus affect a complete route plan.

It is crucial to understand how the interdependence problem changes the nature of the problem.
This is all the more important as heuristics for standard VRPs, most notably, local search
approaches, usually exploit the independence of routes and, hence, are not directly applicable to
VRPMSs. Consider, for example, local search moves such as an intra-route shift of a customer
to another position or an inter-route swap of two customers between two routes in a standard
VRP. The change such a move incurs on the overall route plan is limited to the route(s) where
customers are actually relocated, that is, in most cases, to one (in the case of an intra-route
move) or two routes only. Cost changes and feasibility need only be checked for the affected
routes. For many such neighbourhoods, techniques are available to evaluate cost and feasibility
in amortized constant time, independent of the length of the involved routes (measured in
number of customers) and independent of the number of routes in the solution (Savelsbergh
[47], Irnich et al. [25], Vidal et al. [50]).

If, as it is common in VRPs, the objective function strives to minimize the number of vehicles
used and/or to minimize the costs or overall distance travelled, evaluation of the objective func-
tion after a move can be done in constant time also in the case of VRPMSs. This is because the
objective function contribution of each route is still independent of other routes. The situation
is different if the objective function consists in minimizing the maximal route duration or the
duration of execution of the complete route plan. Then, to re-evaluate the objective function
after a move in a standard VRP still requires only the recomputation of the schedule of the mod-
ified route(s), whereas in VRPMSs, the interdependence problem may require a computationally
intensive, linear-time rescheduling of all routes.

In the existing literature on heuristics for VRPMSs, different approaches are employed to deal
with the interdependence problem (cf. ref. [16]). The three most important ones are (i) allowing
intermediate infeasible (iii) solutions and penalizing them in the objective function, (ii) only
estimating or incompletely evaluating moves, and performing indirect search (to this author’s
knowledge, these techniques were first used in the context of VRPMSs by Oertel [39], De Rosa
et al. [10], and Li et al. [28] respectively; Derigs and Déhmer [12] give an introduction to indirect
search).



Different ways of performing a task

The term transport essentially means to bring a physical object from one location (point in
space and time) to another. Therefore, almost any task to be performed in any type of (vehicle)
routing problem can be represented by one or more such basic activities, which are henceforth
called elementary (transport) tasks. In standard vehicle routing problems, such as the VRP or
the pickup-and-delivery problem with time windows (VRPTW and PDPTW respectively), there
is exactly one way of performing a task: In the VRPTW, each task consists in collecting a certain
amount of load at a customer location and transporting this load to the depot (or the other way
round in VRPTWs where the customers have demands instead of supplies). In the PDPTW, a
task consists in picking up a good at a certain location and transporting the good to another
location. In both cases, each task is performed by exactly one vehicle. In many VRPMSs, as will
be shown shortly, more than one way of performing a task may exist, and more than one vehicle
may be necessary to fulfil a task.
In generalized routing problems, an additional degree of freedom exists. The simplest such prob-
lem (which is still NP-hard in the strong sense) is the generalized travelling salesman problem
(GTSP), where there is a set of disjoint clusters of vertices, and a closed route is sought that
visits exactly one vertex from each cluster. Hence, a decision must be made which vertex to visit
from each cluster. Put differently, this means that there are different ways of performing a task:
For fulfilling the task of visiting a certain cluster of vertices {1, ...,n}, there are n different ways,
namely, visiting vertex i, ¢ = 1,...,n. Such generalized (vehicle) routing problems have been
studied by Karapetyan and Gutin [26] (GTSP), Blais and Laporte [6] (generalized routing prob-
lem, GRP), Baldacci et al. [5] (generalized VRP, GVRP), and Moccia et al. [35] (GVRP with
time windows, GVRPTW). However, these problems are not VRPMSs in the sense the term is
used here, because they lack the synchronization requirements (other than task synchronization
in the GVRP and the GVRPTW). Nevertheless, solution approaches for VRPMSs must be able
to handle the existence of different ways of performing a task and are thus in principle also
suitable for generalized routing problems.

Whereas the interdependence problem is a constitutive property of VRPMSs, in some problems,

there is only one way of performing a task. In general, this is regularly the case when only task

and movement synchronization are necessary, but it can also occur in cases with operation and
resource synchronization. In Table 2, the pure simultaneous vehicle and driver routing problems
and personnel dispatching problems with synchronization fall into this category.

A property of the generalized routing problems just described is that the number of different

ways of performing a task is finite (and usually rather small). For some VRPMSs where there

are different ways of performing a task, this is also true. For example, in PDPTWTs, it is
sometimes assumed that a transport task must either be fulfilled without transshipment or with
one transshipment at one of a small number of potential transshipment locations. In such cases,
it is possible and sensible to enumerate and explicitly consider all different ways of performing

a task in a solution heuristic (see, e.g., Mitrovi¢-Mini¢ and Laporte [34]). On the other hand, in

many cases, the number of different ways of performing a task is large or even infinite. Above

all, this is the case in most split delivery VRPs, but also in PDPTWTs with a larger number
of potential transshipment locations and/or the possibility of transshipping a task more than
once.

Many authors have considered different ways of performing a task in their solution approaches to

VRP variants and VRPMSs. On an abstract level, the following three approaches to determining

a way of performing a task in a solution procedure can be distinguished:

o Implicit determination of the way a task is performed. This means that the routing of the
vehicles ensures that a task is fulfilled. A notable reference using this approach is Del Pia and
Filippi [11].

o FEaxplicit determination of subtasks or task legs through task splitting. This means that in each
iteration of a heuristic, one concrete way of performing a task is selected /determined, and this
way is then included into the solution constructed in the iteration. This approach is taken by
Bock [7].



o FExplicit determination of derived tasks. This is a variant of the preceding approach. As before,
concrete elementary tasks are determined and planned, but each of these tasks may completely
or partially fulfil more than one original task. (No paper using this approach known.)

To better illustrate these concepts, consider the VRPTT. There, implicit determination of a
way of performing a task means that a solution procedure determines a route plan based on the
customer supplies, without specifying the actual flow of each customers’ supply. For example,
in a solution, a customer ¢ may be visited by a lorry k that afterwards visits transshipment
location [ and transfers a certain amount of load to trailer &’ there. It is not specified how
much of ¢’s supply is transferred, and it is not necessary to know this. Whether the transferred
load was completely or partially collected at ¢ or at some other customer visited by k before
l is irrelevant. Explicit determination of subtasks through task splitting in the VRPTT means
to define, before routing the vehicles, whether, and, if so, where how much of each customer’s
supply is transshipped. For example, it can be specified that the supply of customer i is collected
by a lorry, transported to transshipment location [ and transferred there, and finally brought to
the depot. Thus, the original task of transporting the supply of i to the depot, ¢ — d, is split into
two elementary subtasks or task legs, i — [ and [ — d. (Note that this does not mean that the
vehicle k performing a subtask u — v goes directly from u to v. k may visit an arbitrary number
of locations after u and before v, but the load collected or received at u will stay on k from u
to v.) Explicit determination of derived tasks in the VRPTT means that a set of elementary
transport tasks is computed, some of which comprise the supply of more than one customer. For
example, if there are two customers i1 and io with a supply of five units each, one transshipment
location I, and one depot d, there are two original elementary tasks i1 — d and io — d. These
can be performed by transporting ¢1’s and is’s supplies to [ and from there to d, resulting in the
derived tasks i1 — [, io — [, and | — d, with a capacity requirement of five, five, and ten units
respectively. The derived elementary task [ — d partially fulfils both original tasks. Note that
derived tasks exceeding the capacity of the largest vehicle must be split into sufficiently small
tasks.

Mandatory vs. optional synchronization

In many VRPMSs, synchronization is mandatory. This means that there is no choice whether
or not to synchronize vehicles. For example, in multi-echelon problems, transshipments are un-
avoidable by definition. In the simultaneous vehicle and crew routing and scheduling problem,
it is clear that the movements of lorries and drivers must be synchronized, because lorries as
well as drivers are non-autonomous. In personnel dispatching problems, a task may, for tech-
nical reasons, require technicians to be at the same location at the same time, making operation
synchronization necessary. In the VRPTT, depending on the data of each instance, synchroniz-
ation (other than task s.) may be optional: If there are sufficiently many lorries with sufficient
capacity, so that each customer can be visited by a lorry without a trailer, feasible solutions
using no trailers and performing no transshipments exist, so that operation, movement, load,
and resource s. are unnecessary. This implies an additional degree of freedom and, hence, com-
plexity. In a heuristic, it is not at all obvious how to determine which trailers, if any, should be
used, and which transshipments (if any) should be performed.

A heuristic for the VRPTT

To overcome the difficulties mentioned in the previous section, the proposed heuristic uses the

following three ideas:

e The interdependence problem and the resulting non-trivial feasibility checks of modified solu-
tions are addressed using the sophisticated procedures developed by Masson et al. [31] and
Grangier et al. [21].

e Each original task is decomposed into an ordered sequence of one or more subtasks. All sub-
tasks are pickup-and-delivery tasks. Separate routines are used for the systematic determina-



tion of ways how to perform the original tasks (taking into account optional synchronization)
and for planning the computed subtasks. A PDPTWT is solved to consider the relationships
between the subtasks.

e Movement synchronization is handled by sequential solution of appropriately defined PDPTWTs.

The heuristic consists of three steps:

(i) Determine one or more possible ways of performing each task by explicitly computing
subtasks through task splitting and/or by computing derived tasks.

(ii) Solve a pickup-and-delivery problem with time windows and transshipments for planning
the subtasks or derived tasks determined in step (i). Use a fleet consisting of all lorries
and all trailers of the original problem. Consider all trailers autonomous and set their
costs equal to the costs of a lorry-trailer combination to avoid putting the lorries at a
disadvantage.

(iii) Solve a pickup-and-delivery problem with time windows and transshipments for planning
the tasks corresponding to the route segments of a step (ii) solution. (A route segment starts
and ends at a depot or a transshipment location. For example, consider the step (ii) route
d—1i—1— j— d, where d is a depot, ¢ and j are customers, and [ is a transshipment
location. This route consists of the two segments d — ¢ — [ and | — j — d, which
are regarded in step (iii) as the pickup-and-delivery tasks d — [ and [ — d.) Use a fleet
consisting of the lorries only. Assign two capacities to each lorry, namely, ‘number of lorry
tasks currently performed’ and ‘number of trailer tasks currently performed’, both with an
upper bound of one, where a lorry (trailer) task is a segment of a route performed by a
lorry (trailer) in a step (ii) solution. Moreover, consider compatibility constraints between
tasks: If a lorry task is loaded onto a lorry, this lorry can perform a trailer task only if all
customers visited by the lorry task are also accessible by a trailer. This can very easily be
modelled by assigning a trailer capacity requirement of one to all lorry tasks that visit a
customer unaccessible by a trailer.

Step (i), together with the first step (ii) iteration (which determines a complete solution) can

be seen as an initial construction heuristic.

Step (ii) serves to ‘route the capacities’ of the available original fleet. Within the PDPTWT

solution procedure used in step (ii), it is possible to further split the sub- or derived tasks com-

puted in step (i) (cf. Masson et al. [30]). That is, new ways of performing a task can be computed
also in step (ii). The underlying heuristic assumption, though, is that each sub-/derived task
is always fulfilled by one vehicle, either a lorry or a trailer. This means that if a subtask is to
transport the supply of a customer ¢ to transshipment location [, then, even if ¢ may be visited
by a lorry-trailer combination, the complete supply of i is loaded into either the lorry or the

trailer visiting 4.

Step (iii) routes autonomous vehicles in order to move the capacities along their routes as

determined in step (ii).

The PDPTWT heuristic(s) used in steps (ii) and (iii) may consider only one or more than one

way of performing each task. For example, in step (ii), the heuristic may consider performing a

task ¢ — 7 without a transshipment or with one transshipment at the transshipment location

incurring the smallest detour and check the costs resulting from using each of these ways. The

ALNS described in ref. [30] takes this approach. In step (iii), different ways of performing a

task can result from different partitionings of a step (ii) route into segments. For example, a

route d — p1 — pa — 1 = p3 — ls — d3 — d can be partitioned into one segment (the

complete route), the segments d — p; — p2 — [; and l; — p3 — la — d3 — d, the segments

d — pp = p2 = 11 = p3 — ls and Iy — d3 — d, and the segments d — p1 — ps — Iy,

ll —)p3—>l2, andlg—>d3—>d.

If the solution procedure used in step (ii) is capable of determining new ways of performing a

task (as it is the case with the procedure described in ref. [30]), step (i) is not necessary. However,

the approach(es) used in step (i) could be rather sophisticated and time-consuming ones to be
called only a limited number of times, for example, to act as diversification mechanisms if the
above three-step heuristic were to be performed repeatedly in a multi-start fashion.



An alternative interpretation of what happens in steps (ii) and (iii) is as follows. The problem
to be solved in step (iii) is a pickup-and-delivery problem where the original tasks are to pick
up vehicle capacities at their respective origin depots and transport them to their respective
destination depots. The way of performing each of these original tasks has been determined
in step (ii) by explicitly determining subtasks: The original task ‘transport a trailer with a
capacity of 10 from depot d to depot d’ may, for example, have been split into subtasks d — I3
and Iy — d in step (ii). Hence, steps (i) and (ii) of the procedure can be regarded as routines
for computing ways of performing tasks, and steps (ii) and (iii) can be viewed as routines for
planning predetermined sub- or derived tasks, so that step (ii) has a double function.

The procedure performs task, spacial operation, load, and resource synchronization simultan-
eously in step (ii), and movement and temporal operation synchronization in step (iii). Note that
the heuristic described above is independent of a concrete procedure for each of the three steps.
In fact, numerous possibilities exist for tackling step (i), and any algorithm for the PDPTWT
can be used in steps (ii) and (iii). The following subsections discuss such options.

Splitting tasks

In the VRPTT, there are infinitely many ways of performing a task. Even if it is assumed that the
complete supply ¢ of a customer must be collected at the customer location by one vehicle, if the
good to be collected is homogeneous, e.g., a liquid, the fraction of a certain customer’s supply
transferred at a transshipment location can lie anywhere in the interval ]0,¢|. For heuristic
purposes, and for the sake of solvability, however, it is justified to consider only a (discrete,
finite, small) subset of the number of ways. For example, the number of times a task may be
transshipped can be limited to one or two, and it can be required that the complete load of an
original task be transferred in each transshipment process.

In view of this, the following procedures are proposed for determining ways of performing a task

ex ante:

(i) The simplest method is to limit the number of ways and to randomly select if and where
a task should be transshipped as well as if and how the pickup of the supply of customers
accessible to trailers should be split between a lorry and a trailer that both visit the
customer.

(ii) Another possibility is to compute the movements of customer supplies by solving a kind
of min-cost network flow problem (cf. Ahuja et al. [1] for a thorough treatment of flows
in networks). The network consists of one vertex for each customer, each transshipment
location, and each depot, plus one artificial sink vertex. In network flow terminology, the
customers are obviously the supply vertices, and the artificial sink is the sole demand
vertex with a demand equal to the sum of all customer supplies. Arcs exist between any
pair of vertices except that all arcs leaving a depot vertex lead to the sink and no arc
leaves the sink. The capacities and costs of arcs leaving and/or entering customer vertices
are respectively equal to the average capacity and traversal costs of all types of lorries
and trailers that can visit the customer. The capacities and costs of arcs (i,j) leaving
transshipment vertices and entering transshipment or depot vertices are respectively set to
nfjt . quvg fjt is an estimate of the number of vehicles that can traverse
(4,7) and might receive load at i, ¢j; 7 is the average capacity of all types of lorries and
trailers that can traverse (4, j), and ¢;;? is the average traversal cost of all types of lorries
and trailers that can traverse (i, j). Arcs leading to the sink are uncapacitated and have
zero cost. To avoid that all flow goes directly from each customer to the closest depot,
which would be the case in the above network, the number of arcs entering each depot
must be limited to the number of available vehicles (if this number is finite) or to some
other reasonable number. Alternatively, the costs of arcs from customers to depots can be
increased. Relevant ways of performing the tasks can then extracted from a solution to this
network flow problem as follows. Select an arbitrary path from a customer vertex to a depot
vertex. This path is a (complete or incomplete) way of performing the task corresponding

av
and cijg, where n



(iii)

to the customer. Determine the minimal flow on any arc of this path. Remove the pertinent
arc from the solution and reduce the flow on all other arcs of the path by this minimum
value. Repeat until all arcs are removed.

To better account for the temporal aspect present in the VRPTT, i.e., the time windows at
depot, customer, and transshipment locations and the arc travel times of the lorries, flows
over time can be computed. This can be done based on a time-space network, cf. Griinert
and Sebastian [22].

Instances of network flow problems such as those just described, resulting from typical
real-world VRPTT instances (several hundred customers and transshipment locations),
are of a size that can be solved to optimality with standard mixed-integer programming
solvers in reasonable time.

An alternative is to solve the following continuous relaxation of a type of service network
design problem on a time-space network D = (V, A) with the same structure as that of
item (ii), where K is the set of available vehicle (or, rather, capacity) types, K and K7
with K = KL w KT are the sets of lorry and trailer types respectively, ¢* the capacity of
vehicle type k, cfj the cost of traversing arc (i,j) with vehicle type k € K, s is the total
supply of all customers, s; the supply of customer ¢, yfj > 0 denotes the number of vehicles
of type k moving along arc (4, ), and z;; > 0 denotes the flow of load along arc (i, j):

Y Y chyl —»min (1)

keEK (i,j)eA
v <> dyl V(ij) €A (2)
keK
Si, © is a customer vertex

Z Thi — Z Tij = 0, 4 is a transshipment or depot vertex Vi€V (3)
(hyi)eA (i,)€A —s, 1 is the sink vertex

S owuhi— >, u=0 VEeK,(i,j)cA (4)
(hyi)€eA (i,5)€A

> yh=1 Viev (5)

keKE (i,j)€A

Z Z yfj <1 V customer vertices 7 accessible to a trailer (6)
keKT (i,j)eA

(2) link the flow and vehicle variables. (3) are the flow conservation constraints for the
supplies, (4) those for the vehicles. (5) and (6) ensure that a customer vertex is not visited
too often.

From a solution to this problem, relevant ways of performing the tasks can be determined
as described for the previous alternative.

A further option is to solve a warehouse location problem (Daskin [9]). All transshipment
and depot locations are potential warehouses (with fixed opening costs of zero). For ware-
houses corresponding to transshipment locations I, the capacities are set to nf* - ¢/,
where nfSt is an estimate of the number of vehicles that can visit [, and q;wg is the average
capacity of all types of lorries and trailers that can visit [. For warehouses corresponding to
depots, the capacity is set to infinity. The assignment costs of a customer ¢ to a potential
warehouse corresponding to a transshipment location [ are set to the costs of traversing
the arcs (i,1) and (I, d), where d is the depot closest to [, with an average vehicle. Assign-
ment costs of a customer i to a potential warehouse corresponding to a depot d are set
to the traversal costs of the arc (i,d) with an average vehicle. The way of performing a
task ¢ assigned to a warehouse corresponding to a transshipment location [ is then the two
sub-tasks ¢ — [ and [ — d, where again d is the depot closest to [. The way of performing

a task ¢ assigned to warehouse corresponding to a depot d is the original task ¢ — d.



The warehouse location problem instances resulting from typical real-world VRPTT in-
stances can also be solved with standard solvers.

(v) Ref. [30] describes a procedure for determining which transshipment location, if any, should
be used for a set of tasks, given a partial solution to a PDPTWT. This procedure is based
on solving a variant of the k-star hub problem (Oertel [39]) and can also be applied, with
only minor modifications, if no tasks at all have been planned so far.

(vi) Finally, it is also possible to compute a solution to a more restricted VRP, for example, a
truck-and-trailer routing problem (TTRP), for which numerous heuristics exist (cf. Prod-
hon and Prins [41]). The TTRP is a special case of the VRPTT with a fixed lorry-trailer
assignment, i.e., each trailer can be pulled by only one lorry, and only this lorry can transfer
load into the trailer. This implies that there is no interdependence problem in the TTRP, as
the route of each lorry completely determines the route of its assigned trailer (if any), even
though it is allowed that trailers be decoupled and parked at transshipment locations. All
tasks that are transferred from a lorry to its trailer at transshipment locations constitute
split or derived tasks for step (ii). Further splitting of tasks can then be performed within
the step (ii) solution procedure (cf. again ref. [30]).

Note that in the first three approaches described above, the only limit on the number of task

legs that might be created for any task is the number of transshipment locations. In the last

three approaches, each task is split into at most two legs.

If the number of vehicles is limited, it is not guaranteed that the sub- and derived tasks determ-

ined in step (i) can be feasibly performed with the existing fleet in step (ii) (similar for steps (ii)

and (iii)). However, this can be handled by introducing a task bank, where original tasks are

placed for which at least one sub- or derived task could not be performed (cf. Ropke and Pi-
singer [45]). Alternatively, infeasible solutions violating time window or capacity constraints can
be allowed and penalized in the objective function.

Routing the subtasks

Heuristic solution procedures for PDPTWTs have been proposed, among others, by Shang and
Cuff [48], Oertel [39], Mues and Pickl [36], Mitrovié-Mini¢ and Laporte [34], Thangiah et al.
[49], Qu and Bard [42], Masson et al. [30]. The adaptive large neighbourhood search (ALNS)
by Masson et al. [30] is currently probably the most powerful one, in particular as it makes
use of a sophisticated procedure to check the feasibility of the insertion of a(n original, sub-,
or derived) task into a route in amortized constant time. The procedure is described in detail
in the seminal work Masson et al. [31]. Other authors use linear-time routines for checking
feasibility. This author is, however, unaware of work on pertinent data structures and algorithms
for constant-time evaluations of min-max, makespan and cumulative duration objective functions
in VRPMSs. An advantage of ALNS is that it allows to determine new ways of performing a task
dynamically, during the process of solving the PDPTWT in step (ii). Essentially, all procedures
described in the previous section on splitting tasks can be used as part of a reconstruction
heuristic in an ALNS. What is more, a constant-time feasibility check also allows efficient use
of local search procedures, so that not only an ALNS can be extended by local search, but
also other metaheuristics such as tabu search or memetic algorithms can be used to solve the
PDPTWTs for routing the subtasks in steps (ii) and (iii) of the VRPTT heuristic.

It is allowed or required in most PDPTW'T papers that the pickup of a load at a transshipment
location be performed at any time after its delivery (operation synchronization with precedences
and 0 = a < A < b = oo in the terminology of ref. [16], see page 2). In many applications,
however, including classical ones of the VRPTT, simultaneous or exact deferred o. s. (A = 0
or A = a > 0 respectively) or o. s. with precedences with a variable but finite offset (0 <
a < A < b < o0) is required. The above-mentioned constant-time feasibility check described
in ref. [31] is suitable for o. s. with precedences with unlimited offset (0 = a < A < b = o)
and is extended by Grangier et al. [21] to handle the case of simultaneous o. s., i.e., the case
that, for a transshipment, both involved vehicles must be at the transshipment location at the
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same time. The approach of ref. [21], in turn, can be generalized to cover all cases of operation
synchronization. To explain how this works, the original approach is described in the following.
In PDPTWTs, two aspects must be checked to ensure feasibility of a route plan with respect to
time: (i) The dynamic time windows of every vertex must respect the static time windows of all
other vertices within its route as well as the dynamic time windows of the vertices of all sub- or
derived tasks with the same original task. (ii) The route plan must be logically consistent with
respect to precedences between pickups and deliveries of tasks in different routes.

(i) means the following: Given an original task ¢ — j, assume that the way of performing this
task is ¢ — [, I — j, and that the two routes performing these subtasks are d - ¢ — [ — d
and d — | — j — d. Further assume that the time windows for visiting d, 7, j, and [ are [0, 10]
(static time windows), and that the driving between any pair of vertices is 2. Then, i can be
visited along its route in the interval [2,6]. If the static time window of [ is [0, 4], however, the
dynamic time window of ¢ is [2, 2]. If the static time window of [ is [0, 1], the route is infeasible.
In VRPMSs, the interdependence problem must be taken into account. If the time window of j
is [6, 7], arriving at 7 at time 6 is infeasible, so the dynamic time window of i, when taking into
account the subtask j — d, performed in another route, becomes [2, 5].

(ii) means the following: Given the above route plan, a task ¢/ — j’ with subtasks i — I’ and
I — j' cannot be inserted into the route plan as follows, even if all static time windows are
ignored: d 1" - 5 i —1l—dandd —>1— j— i — 1" — d. Although the two routes
are still temporally feasible by themselves, performing the route plan would require visiting 7’
before I before j' before ¢ before [ before j before 7', that is, i’ before 7/, a contradiction.

To ensure these two aspects, in ref. [31], a so-called precedence graph is used. This is a directed
acyclic graph that, as its name implies, models the logical precedence relationships between
vertices according to a given route plan for a given set of sub- or derived tasks. The precedence
graph contains all vertices of all subtasks and an arc for each logical precedence relation between
two vertices. The travel times of the arcs in the precedence graph are set to the values of the
corresponding arcs in the original graph. To check (i) in constant time, in ref. [31], the concept
of forward time slack, introduced by Savelsbergh [47], is extended. The forward time slack, as
described in ref. [47], allows to check the feasibility of an insertion of a vertex i into a route
p in constant time, taking into account the vertices already present in p. In ref. [31], vertices
from other routes are included into this calculation, namely, vertices from subtasks with the
same original task as i. These vertices are identified via the precedence graph. To check (ii), in
ref. [31], the precedence graph is checked for cycles, which can be done in constant time using
adequate data structures.

The precedence graphs for the two above route plans, without and with task i — j’ respectively,
in an ‘any-time-after PDPTWT’ look as shown in the following Figure 1, where the depot vertex
d has been duplicated into s and e, the start and the end depot vertex:

/\

" SaAN

Figure 1: Precedence graphs

Given two subtasks ¢ — [ and [ — j requiring simultaneous o. s., applying the idea of ref. [21]
to a PDPTWT setting creates a precedence graph as depicted in the following Figure 2:

In the precedence graph of Figure 2, three vertices, 1, l2, and 3, and three arcs, (I1,12), (11,13),
and (I3, 12), all with a travel time of zero, are created to model the transshipment at . It is easy
to see that the only possibility for avoiding logical inconsistencies is to perform the delivery to
and the pickup from [ at the same time.

11



N
v

Figure 2: Modified precedence graph

In general, the offset A that must or may occur between the delivery to and the pickup from [
fulfils 0 < a < A < b < co. Whatever the concrete values of a and b, the respective temporal
relationship between the two subtasks ¢ — [ and [ — j specifying a transshipment of an original
task ¢ — j at [ is ensured if the travel times of the arcs (I1,12), (I1,13), and (I3,l2) in Figure 2
are set to zero, a, and —b respectively. This approach generalizes in a straightforward manner to
tasks split up into more than two legs: It is sufficient to create one transshipment vertex triple
as in Figure 2 for each pair of consecutive subtasks.

Solving other types of VRPMSs

As mentioned above, the VRPTT features all types of synchronization requirements, and all
important types of VRPMSs described in Table 2 are special cases of the VRPTT. Therefore,
a heuristic capable of solving VRPTTs can be used to solve many other VRPMSs, too. As
Ropke and Pisinger [46] and Vidal et al. [50] have shown, generic vehicle routing heuristics can
be capable of obtaining extremely good results for several different problem types. Hence, a
heuristic for the VRPTT is, in principle, a possible solution approach for other VRPMSs. This
section describes how the procedure described in the previous section can be employed to this
end.

VRPs with split pickup and/or split delivery

Problems with exclusively task and load synchronization, commonly referred to as split delivery
VRPs (SDVRPs), are a rather special and very well-studied case of VRPMSs. In such problems,
it is allowed that several vehicles visit a customer, each delivering (collecting) a part of the cus-
tomer’s demand (supply). Transshipments are not allowed, but load synchronization is necessary
at the customer vertices. It is straightforward to see how such problems can be solved with the
above heuristic: In step (i), the subtasks to be determined concern only the load splitting aspect
when collecting supplies at customer vertices; transshipments locations are not considered. This
means that procedures (i) to (iii) can be used for step (i) simply by relaxing the requirement
that only one lorry may visit a customer; procedures (iv) to (vi) are not applicable. Step (iii)
of the heuristic can simply be omitted. It is to be expected, however, that a tailored SDVRP
procedure will lead to better results. For more information on the SDVRP or the pickup-and-
delivery problem with split pickups and/or split deliveries, the reader is referred to Archetti and
Speranza [4], Derigs et al. [13], Desaulniers [14], and Hennig et al. [24].

PDPTWs with or without transshipments

If the original problem that is transformed into a VRPTT is already a PDP, then approaches (i)
and (v) for step (i) described above will work unmodified; (ii) and (iii) become multi-commodity
network flow and service network design problems respectively; the necessary modifications are
straightforward. (iv) can not be applied in this case. Instead, a hub location problem could be
solved, cf. Alumur and Kara [2]. As for approach (vi), this author is unaware of work on a
problem similar to the TTRP with pickup-and-delivery tasks. Again, step (iii) can be omitted.
A related problem is the dial-a-ride problem with transshipments (DARPT). The DARP(T) is
a PDPTW(T) occurring in passenger transport, i.e., the tasks correspond to transporting one
or more persons from a pickup to a destination location, without or with the possibility to
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change vehicles, i.e., without or with transshipments. A survey on the DARP is provided by
Cordeau et al. [8]. For reasons of user convenience, in addition to PDPTW(T) constraints, it is
usually required in DARP(T)s that the time between pickup and delivery of a person be limited
to a maximal ride-time. Masson et al. have extended their results on the PDPTWT described
in ref. [31] to ride-time constraints and provided an efficient feasibility check for this type of
restriction. Other than that, the DARPT is equivalent to the PDPTWT, so that DARPTSs can
be solved with the PDPTWT heuristic of Masson et al. [30], augmented by the ride-time check
of Masson et al., in step (ii).

Multi-echelon vehicle and location-routing problems

N-echelon problems can be solved with the above heuristic by considering, in step (i) (and/or,
as mentioned above, within the PDPTWT heuristic used in step (ii)), the allowed ways of
performing a task consisting of transporting some good from a central depot d to customer
via N — 1 load transfers at transshipment locations. These different ways of performing a task
d — i consist in all combinations of elementary tasks d — ', I* — 12, ..., IV"1 — i with
" being a transshipment location at hierarchy level k. Step (iii) is not necessary. (The above-
mentioned ref. [21] presents a slightly different, one-step solution approach for NE-VRPs/LRPs
with simultaneous o. s. For 2E-VRPs/LRPs with pure spatial o. s., there are considerably simpler
procedures, cf. the survey in ref. [41].)

Simultaneous vehicle and crew routing and scheduling problems

The few papers on SVCRSPs published so far regard vehicles as inseparable units (i.e., either
single lorries or lorry-trailer combinations that remain physically coupled together throughout
the planning horizon) and do not consider the possibilities of split pickups/deliveries or of load
transshipments. The issue in SVCRSPs is to perform movement synchronization between vehicles
and drivers. The transshipment locations are only used as relay stations where no load transfers
and no de- or recouplings of trailers occur, but where drivers may change vehicles. It is sensible
to route the vehicles in step (ii) and the drivers in step (iii), because this allows driver changes
also for non-empty vehicles, which is not possible when these steps are reversed, cf. ref. [19].
In step (ii), it must be ensured that lorries visit relay stations at all, which will not happen
automatically, considering that such visits incur detours. To this end, the following approach is
possible: Assume without loss that the planning horizon is p periods, each consisting of ¢ time
units (e.g., one working week of five days, each having 1440 minutes), and require that each lorry
visit a relay station at least r times during the planning horizon. For each available lorry & (or,
in the case of an unlimited fleet, for a sufficiently large number of lorries) with start depot d,
create r artificial tasks 7"5 ,v=1,...,r, consisting in ‘transporting a driver’ from a location to
another location. There are different ways of performing each of these tasks. The first artificial
task can be fulfilled by ‘transporting a driver’ from the start depot to any relay station or the
end depot, the other ones by ‘transporting a driver’ from any relay station to any other relay
station or the end depot. The underlying network is such that the only arc that can be traversed
by a lorry k leaving its start depot leads to the unique pickup location of r'f, which coincides
with k’s start depot. The only arc leaving a delivery location of an artificial task 7% leads to
a pickup location of rl’f 41, or to the end depot in the case v = r. From pickup locations of
artificial tasks, all customer task pickup and delivery vertices are reachable. The time window
at a delivery vertex of artificial task 7% is set to start at time zero and end at time (p/r) - v - ¢;
alternatively, ‘ride-time constraints’ can be specified for the artificial tasks as described above
for the DARPT (see page 12). Each artificial task can also be fulfilled at zero cost and time by
visiting a special ‘driver pickup and delivery task vertex’ reachable from all lorry start depots
and the delivery vertices of all ¥, for v > 1 and for all k. All arcs emanating from this vertex
lead to lorry end depots. In this way, all artificial tasks can and will be fulfilled by any feasible
solution. Now, to solve an SVCRSP with the above heuristic, in step (i) ways of performing
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tasks need be determined only for the artificial tasks, because for the ‘real’ tasks, there is only
one way of performing them when no split pickup and no transshipments are allowed.

Note that the reason why transshipment locations are used when no transshipments are allowed
is that drivers must take breaks and rests, whereas vehicles may operate around the clock.
Modelling as well as algorithmic consideration of such driver rules can be extremely complicated
and is beyond the scope of this paper. Pertinent references include Drexl and Prescott-Gagnon
[18], Goel [20], Kok et al. [27], and Prescott-Gagnon et al. [40]. It shall be mentioned, however,
that every paper on driver rules this author is aware of makes the unrealistic assumption that a
break or rest can be taken anywhere en route, i.e., that, upon reaching a time limit, the driver can
simply stop at the roadside. Moreover, beyond what is specified in national or supra-national
(EU) law, there are numerous regulations and case law giving very detailed specifications on
requirements for legal driver schedules. To this author’s knowledge, none of these additional
constraints has so far been considered in a paper on driver scheduling algorithms. Nevertheless,
considering driver rules as it is done in the above references significantly increases the relevancy
to practice of solutions to VRP instances and is an indispensable component of algorithms that
are applied in commercial VRP software. If the above idea of ensuring visits to relay stations in
step (ii) is used, it is sensible to consider (some) driver rules already in step (ii), cf. ref. [19].

The Meisel-Kopfer problem

The Meisel-Kopfer problem (MKP) ([33]) bears some similarity to the SVCRSP in that it requires
exclusively task and movement synchronization. It can be described as follows: A set of full-load
pickup-and-delivery tasks must be fulfilled using a fleet of autonomous and non-autonomous
vehicles (henceforth referred to as lorries and trailers for simplicity). Fulfilling a task requires
exactly one lorry and one trailer. Transshipments of load are not allowed, but it is possible that
an empty trailer is delivered by a lorry k to the pickup location of a task for loading and is left
there for later pickup by k or a different lorry. After having picked up a loaded trailer, a lorry k
must move directly to the delivery location of the task currently loaded. There, the trailer may
again be left, this time for unloading and later pickup by k or a different lorry.

The MKP can be solved with the above heuristic as follows. Step (i) is omitted. Step (ii) is a
VRPTW for the non-autonomous vehicles, i.e., a special case of a PDPTWT. (A VRPTW can
be transformed to a PDPTW(T) by replacing an original task of visiting customer 4 by a pickup-
and-delivery task requiring a pickup at a depot and a delivery at ¢.) Step (iii) is a PDPTWT
where each route of a non-autonomous vehicle is partitioned into segments in the following
manner: The first segment is the transport of the non-autonomous vehicle from its depot to the
pickup location of the first task, the second segment is the transport of the non-autonomous
vehicle from the pickup location to the delivery location of the first task etc.

Personnel dispatching problems with spatio-temporal synchronization con-
straints

In such problems, usually no physical objects are transported between locations, but customers
are visited to perform a service there, i.e., PDPSTSs are VRP type problems. Tasks requiring
synchronization, i.e., where two persons with the same or different qualifications must visit the
customer, can be represented as PDPTWT tasks as follows. Assuming that there is only one
depot d (the extension to multiple depots is straightforward), the original task has one way of
being performed: Perform d — i; with a ‘vehicle’ with qualification A and d — i with a ‘vehicle’
with qualification B, i; and i2 being two vertices corresponding to location/customer i. These
tasks are replaced by two tasks d — i1 and is — i3, requiring a vehicle with qualification A and
B respectively, where i1, i, and i3 again correspond to location i. All arcs leaving i; have their
travel time increased by the service/working time required for the person with qualification A
for the original task at i. There is no arc (iy,i2). The only arc emanating from iy is (i2,13).
This arc has a travel time of zero plus the time required for the person with qualification B
for the original task at i¢. With these constructs, all four types of operation synchronization
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relationships, as mentioned on page 2 (pure spatial o. s., 0. 8. with precedences, simultaneous o.
s., and exact deferred o. s.), can be required for d — i; and iy — i3, and the extended constant-
time feasibility check described in the section on routing the subtasks in the VRPTT heuristic
can be applied (cf. page 10). This also works if, in deferred o. s., the same person may return
later on, and also if both qualifications are of the same type.

Step (iii) of the VRPTT heuristic can be omitted in PSPSTSs where all ‘vehicles’/persons are
autonomous.

The garage distribution problem

The garage distribution problem (GDP) occurs as a real-world problem in planning the distribu-
tion of finished car garages from factories throughout Germany to customer sites using lorries
and trailers. Each vehicle can carry one garage at a time. Some lorries, but not all, are equipped
with a crane behind the driver cabin. In addition, there are pure crane vehicles that cannot
transport any load. To deliver garages to customers and to transfer garages at transshipment
locations, an appropriately equipped lorry or a pure crane vehicle must be present. This means
that, if a garage is to be transferred between two vehicles, but neither has a crane, a third
vehicle must be present. Thus, the GDP is a PDPTW with trailers, transshipments, and support
vehicles (vehicles with zero capacity, cf. refs. [44], [16]; here, the pure crane vehicles) where each
task requires and each vehicle offers a capacity of one, and where simultaneous operation syn-
chronization of three vehicles is relevant. This can be modelled as follows: If it has been decided
that an original task ¢ — j should be transshipped at [, the way of performing the task consists
in the three subtasks ¢ — [1, [1 — [, and I3 — j, where [y, ls, and [3 correspond to [. The
first and third subtask have the usual meaning. The second subtask represents the activity ‘pick
up (lift) the garage from the vehicle that has transported it to [ and deliver (drop) it onto the
vehicle that will bring it from [ to j’. Note that this approach of decomposing the simultaneous
interaction of £ = 3 vehicles generalizes to arbitrary k& > 2.

Summary and outlook

This paper has presented a heuristic for solving the vehicle routing problem with trailers and
transshipments, an archetype of a VRP with multiple synchronization constraints. The heuristic
consists of three steps that can be performed iteratively. It appropriately addresses the central
difficulties of solving VRPMSs and offers great flexibility regarding the concrete implementation
of each step. In addition, it has been shown how many other types of VRPMSs can be solved by
the heuristic, without any algorithmic modifications, simply by adequate representation of the
respective VRPMS instance.

The next steps are of course to provide a concrete implementation of the heuristic and perform
computational tests with different VRPMS instances. Moreover, the idea of ‘layering’ the routing
problems for tasks, capacities, and autonomous vehicles, as presented in the heuristic, can be
extended further. For example, the above-mentioned simultaneous vehicle and crew routing and
scheduling problem (SVCRSP) can be extended to allow transshipments of the tasks, to consider
a vehicle fleet consisting of lorries and trailers, and to take into account driver shuttle transports
between the relay stations (cf. ref. [19]). This leads to a five-step procedure (determine ways
of performing the tasks, then route sub-tasks, capacities, vehicles, drivers and shuttles in this
order). Finally, existing mixed-integer programming formulations for the VRPTT use (arc or
path) variables for vehicles. It might be a good idea to transfer this layering approach and to
employ variables for capacities (of trailers as well as lorries) and variables for (autonomous)
lorries, and to couple these variable types by appropriate constraints.
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